Cargando…
GAMUT: GPU accelerated microRNA analysis to uncover target genes through CUDA-miRanda
BACKGROUND: Non-coding sequences such as microRNAs have important roles in disease processes. Computational microRNA target identification (CMTI) is becoming increasingly important since traditional experimental methods for target identification pose many difficulties. These methods are time-consumi...
Autores principales: | Wang, Shuang, Kim, Jihoon, Jiang, Xiaoqian, Brunner, Stefan F, Ohno-Machado, Lucila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101446/ https://www.ncbi.nlm.nih.gov/pubmed/25077821 http://dx.doi.org/10.1186/1755-8794-7-S1-S9 |
Ejemplares similares
-
MAGI: a Node.js web service for fast microRNA-Seq analysis in a GPU infrastructure
por: Kim, Jihoon, et al.
Publicado: (2014) -
Hands-On GPU Programming with Python and CUDA
por: Tuomanen, Brian
Publicado: (2018) -
cudaMap: a GPU accelerated program for gene expression connectivity mapping
por: McArt, Darragh G, et al.
Publicado: (2013) -
CUDA by example: an introduction to general-purpose GPU programming
por: Sanders, Jason, et al.
Publicado: (2011) -
The CUDA handbook: a comprehensive guide to GPU programming
por: Wilt, Nicholas
Publicado: (2013)