Cargando…
Time-Dependent Effects of Anesthetic Isoflurane on Reactive Oxygen Species Levels in HEK-293 Cells
The inhalation anesthetic isoflurane has been reported to induce caspase activation and apoptosis, which may lead to learning and memory impairment. However, the underlying mechanisms of these effects are largely unknown. Isoflurane has been shown to induce elevation of cytosol calcium levels, accum...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101479/ https://www.ncbi.nlm.nih.gov/pubmed/24961763 http://dx.doi.org/10.3390/brainsci4020311 |
_version_ | 1782480906932453376 |
---|---|
author | Sun, Yongxing Cheng, Baiqi Dong, Yuanlin Li, Tianzuo Xie, Zhongcong Zhang, Yiying |
author_facet | Sun, Yongxing Cheng, Baiqi Dong, Yuanlin Li, Tianzuo Xie, Zhongcong Zhang, Yiying |
author_sort | Sun, Yongxing |
collection | PubMed |
description | The inhalation anesthetic isoflurane has been reported to induce caspase activation and apoptosis, which may lead to learning and memory impairment. However, the underlying mechanisms of these effects are largely unknown. Isoflurane has been shown to induce elevation of cytosol calcium levels, accumulation of reactive oxygen species (ROS), opening of the mitochondrial permeability transition pore, reduction in mitochondria membrane potential, and release of cytochrome c. The time course of these effects, however, remains to be determined. Therefore, we performed a pilot study to determine the effects of treatment with isoflurane for various times on ROS levels in HEK-293 cells. The cells were treated with 2% isoflurane plus 21% O(2) and 5% CO(2) for 15, 30, 60, or 90 min. We then used fluorescence imaging and microplate fluorometer to detect ROS levels. We show that 2% isoflurane for 60 or 90 min, but not 15 or 30 min, induced ROS accumulation in the cells. These data illustrated that isoflurane could cause time-dependent effects on ROS levels. These findings have established a system to further determine the time course effects of isoflurane on cellular and mitochondria function. Ultimately, the studies would elucidate, at least partially, the underlying mechanisms of isoflurane-induced cellular toxicity. |
format | Online Article Text |
id | pubmed-4101479 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-41014792014-07-17 Time-Dependent Effects of Anesthetic Isoflurane on Reactive Oxygen Species Levels in HEK-293 Cells Sun, Yongxing Cheng, Baiqi Dong, Yuanlin Li, Tianzuo Xie, Zhongcong Zhang, Yiying Brain Sci Article The inhalation anesthetic isoflurane has been reported to induce caspase activation and apoptosis, which may lead to learning and memory impairment. However, the underlying mechanisms of these effects are largely unknown. Isoflurane has been shown to induce elevation of cytosol calcium levels, accumulation of reactive oxygen species (ROS), opening of the mitochondrial permeability transition pore, reduction in mitochondria membrane potential, and release of cytochrome c. The time course of these effects, however, remains to be determined. Therefore, we performed a pilot study to determine the effects of treatment with isoflurane for various times on ROS levels in HEK-293 cells. The cells were treated with 2% isoflurane plus 21% O(2) and 5% CO(2) for 15, 30, 60, or 90 min. We then used fluorescence imaging and microplate fluorometer to detect ROS levels. We show that 2% isoflurane for 60 or 90 min, but not 15 or 30 min, induced ROS accumulation in the cells. These data illustrated that isoflurane could cause time-dependent effects on ROS levels. These findings have established a system to further determine the time course effects of isoflurane on cellular and mitochondria function. Ultimately, the studies would elucidate, at least partially, the underlying mechanisms of isoflurane-induced cellular toxicity. MDPI 2014-04-22 /pmc/articles/PMC4101479/ /pubmed/24961763 http://dx.doi.org/10.3390/brainsci4020311 Text en © 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/). |
spellingShingle | Article Sun, Yongxing Cheng, Baiqi Dong, Yuanlin Li, Tianzuo Xie, Zhongcong Zhang, Yiying Time-Dependent Effects of Anesthetic Isoflurane on Reactive Oxygen Species Levels in HEK-293 Cells |
title | Time-Dependent Effects of Anesthetic Isoflurane on Reactive Oxygen Species Levels in HEK-293 Cells |
title_full | Time-Dependent Effects of Anesthetic Isoflurane on Reactive Oxygen Species Levels in HEK-293 Cells |
title_fullStr | Time-Dependent Effects of Anesthetic Isoflurane on Reactive Oxygen Species Levels in HEK-293 Cells |
title_full_unstemmed | Time-Dependent Effects of Anesthetic Isoflurane on Reactive Oxygen Species Levels in HEK-293 Cells |
title_short | Time-Dependent Effects of Anesthetic Isoflurane on Reactive Oxygen Species Levels in HEK-293 Cells |
title_sort | time-dependent effects of anesthetic isoflurane on reactive oxygen species levels in hek-293 cells |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101479/ https://www.ncbi.nlm.nih.gov/pubmed/24961763 http://dx.doi.org/10.3390/brainsci4020311 |
work_keys_str_mv | AT sunyongxing timedependenteffectsofanestheticisofluraneonreactiveoxygenspecieslevelsinhek293cells AT chengbaiqi timedependenteffectsofanestheticisofluraneonreactiveoxygenspecieslevelsinhek293cells AT dongyuanlin timedependenteffectsofanestheticisofluraneonreactiveoxygenspecieslevelsinhek293cells AT litianzuo timedependenteffectsofanestheticisofluraneonreactiveoxygenspecieslevelsinhek293cells AT xiezhongcong timedependenteffectsofanestheticisofluraneonreactiveoxygenspecieslevelsinhek293cells AT zhangyiying timedependenteffectsofanestheticisofluraneonreactiveoxygenspecieslevelsinhek293cells |