Cargando…
Predicting phenotypes of asthma and eczema with machine learning
BACKGROUND: There is increasing recognition that asthma and eczema are heterogeneous diseases. We investigated the predictive ability of a spectrum of machine learning methods to disambiguate clinical sub-groups of asthma, wheeze and eczema, using a large heterogeneous set of attributes in an unsele...
Autores principales: | Prosperi, Mattia CF, Marinho, Susana, Simpson, Angela, Custovic, Adnan, Buchan, Iain E |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101570/ https://www.ncbi.nlm.nih.gov/pubmed/25077568 http://dx.doi.org/10.1186/1755-8794-7-S1-S7 |
Ejemplares similares
-
Distinguishing Asthma Phenotypes Using Machine Learning Approaches
por: Howard, Rebecca, et al.
Publicado: (2015) -
Challenges in interpreting allergen microarrays in relation to clinical symptoms: A machine learning approach
por: Prosperi, Mattia C F, et al.
Publicado: (2014) -
Developmental Profiles of Eczema, Wheeze, and Rhinitis: Two Population-Based Birth Cohort Studies
por: Belgrave, Danielle C. M., et al.
Publicado: (2014) -
Disaggregating asthma: Big investigation versus big data
por: Belgrave, Danielle, et al.
Publicado: (2017) -
Development of childhood asthma prediction models using machine learning approaches
por: Kothalawala, Dilini M., et al.
Publicado: (2021)