Cargando…
Differentially private distributed logistic regression using private and public data
BACKGROUND: Privacy protecting is an important issue in medical informatics and differential privacy is a state-of-the-art framework for data privacy research. Differential privacy offers provable privacy against attackers who have auxiliary information, and can be applied to data mining models (for...
Autores principales: | Ji, Zhanglong, Jiang, Xiaoqian, Wang, Shuang, Xiong, Li, Ohno-Machado, Lucila |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101668/ https://www.ncbi.nlm.nih.gov/pubmed/25079786 http://dx.doi.org/10.1186/1755-8794-7-S1-S14 |
Ejemplares similares
-
Grid Binary LOgistic REgression (GLORE): building shared models without sharing data
por: Wu, Yuan, et al.
Publicado: (2012) -
Supporting Regularized Logistic Regression Privately and Efficiently
por: Li, Wenfa, et al.
Publicado: (2016) -
Choosing blindly but wisely: differentially private solicitation of DNA datasets for disease marker discovery
por: Zhao, Yongan, et al.
Publicado: (2015) -
Secure Multi-pArty Computation Grid LOgistic REgression (SMAC-GLORE)
por: Shi, Haoyi, et al.
Publicado: (2016) -
DPSynthesizer: Differentially Private Data Synthesizer for Privacy Preserving Data Sharing
por: Li, Haoran, et al.
Publicado: (2014)