Cargando…

Effect of vancomycin serum trough levels on outcomes in patients with nosocomial pneumonia due to Staphylococcus aureus: a retrospective, post hoc, subgroup analysis of the Phase 3 ATTAIN studies

BACKGROUND: Existing data are not consistently supportive of improved clinical outcome when vancomycin dosing regimens aimed at achieving target trough levels are used. A retrospective, post hoc, subgroup analysis of prospectively collected data from the Phase 3 ATTAIN trials of telavancin versus va...

Descripción completa

Detalles Bibliográficos
Autores principales: Barriere, Steven L, Stryjewski, Martin E, Corey, G Ralph, Genter, Fredric C, Rubinstein, Ethan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4101862/
https://www.ncbi.nlm.nih.gov/pubmed/24708675
http://dx.doi.org/10.1186/1471-2334-14-183
Descripción
Sumario:BACKGROUND: Existing data are not consistently supportive of improved clinical outcome when vancomycin dosing regimens aimed at achieving target trough levels are used. A retrospective, post hoc, subgroup analysis of prospectively collected data from the Phase 3 ATTAIN trials of telavancin versus vancomycin for treatment of nosocomial pneumonia was conducted to further investigate the relationship between vancomycin serum trough levels and patient outcome. METHODS: Study patients were enrolled in 274 study sites across 38 countries. A total of 98 patients had Staphylococcus aureus nosocomial pneumonia and vancomycin serum trough levels available. These patients were grouped according to their median vancomycin trough level; < 10 μg/mL, 10 μg/mL to < 15 μg/mL, and ≥ 15 μg/mL. RESULTS: Clinical cure rates in the < 10 μg/mL, 10 μg/mL to < 15 μg/mL, and ≥ 15 μg/mL vancomycin trough level groups were 70% (21/30), 55% (18/33), and 49% (17/35), respectively (p = 0.09), and the frequencies of patient death were 10% (3/30), 15% (5/33), and 20% (7/35), respectively (p = 0.31). Renal adverse events were more frequent in the ≥ 15 μg/mL (17% [6/35]) than the < 10 μg/mL (0%) and 10 μg/mL to < 15 μg/mL (3% [1/33]) trough level groups (p < 0.01). When patients with acute renal failure or vancomycin exposure within 7 days prior to study medication were excluded, clinical cure rates in the < 10 μg/mL, 10 μg/mL to < 15 μg/mL, and ≥ 15 μg/mL vancomycin trough level groups (71% [12/17], 60% [9/15], and 27% [3/11], respectively; p = 0.04) and the number of deaths (12% [2/17], 20% [3/15], and 45% [5/11], respectively; p = 0.07) demonstrated a trend towards worse outcomes in the higher vancomycin trough level groups. CONCLUSIONS: The findings of our study suggest that higher vancomycin trough levels do not result in improved clinical response but likely increase the incidence of nephrotoxicity. TRIAL REGISTRATION: NCT00107952 and NCT00124020