Cargando…
Radius Constants for Analytic Functions with Fixed Second Coefficient
Let f(z) = z + ∑(n=2) (∞) a (n) z (n) be analytic in the unit disk with the second coefficient a (2) satisfying |a (2) | = 2b, 0 ≤ b ≤ 1. Sharp radius of Janowski starlikeness is obtained for functions f whose nth coefficient satisfies |a (n) | ≤ cn + d (c, d ≥ 0) or |a (n) | ≤ c/n (c > 0 and ...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102033/ https://www.ncbi.nlm.nih.gov/pubmed/25101327 http://dx.doi.org/10.1155/2014/898614 |
Sumario: | Let f(z) = z + ∑(n=2) (∞) a (n) z (n) be analytic in the unit disk with the second coefficient a (2) satisfying |a (2) | = 2b, 0 ≤ b ≤ 1. Sharp radius of Janowski starlikeness is obtained for functions f whose nth coefficient satisfies |a (n) | ≤ cn + d (c, d ≥ 0) or |a (n) | ≤ c/n (c > 0 and n ≥ 3). Other radius constants are also obtained for these functions, and connections with earlier results are made. |
---|