Cargando…

Weighted A-Statistical Convergence for Sequences of Positive Linear Operators

We introduce the notion of weighted A-statistical convergence of a sequence, where A represents the nonnegative regular matrix. We also prove the Korovkin approximation theorem by using the notion of weighted A-statistical convergence. Further, we give a rate of weighted A-statistical convergence an...

Descripción completa

Detalles Bibliográficos
Autores principales: Mohiuddine, S. A., Alotaibi, Abdullah, Hazarika, Bipan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi Publishing Corporation 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102091/
https://www.ncbi.nlm.nih.gov/pubmed/25105160
http://dx.doi.org/10.1155/2014/437863
_version_ 1782481010388107264
author Mohiuddine, S. A.
Alotaibi, Abdullah
Hazarika, Bipan
author_facet Mohiuddine, S. A.
Alotaibi, Abdullah
Hazarika, Bipan
author_sort Mohiuddine, S. A.
collection PubMed
description We introduce the notion of weighted A-statistical convergence of a sequence, where A represents the nonnegative regular matrix. We also prove the Korovkin approximation theorem by using the notion of weighted A-statistical convergence. Further, we give a rate of weighted A-statistical convergence and apply the classical Bernstein polynomial to construct an illustrative example in support of our result.
format Online
Article
Text
id pubmed-4102091
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Hindawi Publishing Corporation
record_format MEDLINE/PubMed
spelling pubmed-41020912014-08-07 Weighted A-Statistical Convergence for Sequences of Positive Linear Operators Mohiuddine, S. A. Alotaibi, Abdullah Hazarika, Bipan ScientificWorldJournal Research Article We introduce the notion of weighted A-statistical convergence of a sequence, where A represents the nonnegative regular matrix. We also prove the Korovkin approximation theorem by using the notion of weighted A-statistical convergence. Further, we give a rate of weighted A-statistical convergence and apply the classical Bernstein polynomial to construct an illustrative example in support of our result. Hindawi Publishing Corporation 2014 2014-07-01 /pmc/articles/PMC4102091/ /pubmed/25105160 http://dx.doi.org/10.1155/2014/437863 Text en Copyright © 2014 S. A. Mohiuddine et al. https://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Mohiuddine, S. A.
Alotaibi, Abdullah
Hazarika, Bipan
Weighted A-Statistical Convergence for Sequences of Positive Linear Operators
title Weighted A-Statistical Convergence for Sequences of Positive Linear Operators
title_full Weighted A-Statistical Convergence for Sequences of Positive Linear Operators
title_fullStr Weighted A-Statistical Convergence for Sequences of Positive Linear Operators
title_full_unstemmed Weighted A-Statistical Convergence for Sequences of Positive Linear Operators
title_short Weighted A-Statistical Convergence for Sequences of Positive Linear Operators
title_sort weighted a-statistical convergence for sequences of positive linear operators
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102091/
https://www.ncbi.nlm.nih.gov/pubmed/25105160
http://dx.doi.org/10.1155/2014/437863
work_keys_str_mv AT mohiuddinesa weightedastatisticalconvergenceforsequencesofpositivelinearoperators
AT alotaibiabdullah weightedastatisticalconvergenceforsequencesofpositivelinearoperators
AT hazarikabipan weightedastatisticalconvergenceforsequencesofpositivelinearoperators