Cargando…
Magneto-Chemotaxis in Sediment: First Insights
Magnetotactic bacteria (MTB) use passive alignment with the Earth magnetic field as a mean to increase their navigation efficiency in horizontally stratified environments through what is known as magneto-aerotaxis (M-A). Current M-A models have been derived from MTB observations in aqueous environme...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102565/ https://www.ncbi.nlm.nih.gov/pubmed/25032699 http://dx.doi.org/10.1371/journal.pone.0102810 |
_version_ | 1782327034958053376 |
---|---|
author | Mao, Xuegang Egli, Ramon Petersen, Nikolai Hanzlik, Marianne Liu, Xiuming |
author_facet | Mao, Xuegang Egli, Ramon Petersen, Nikolai Hanzlik, Marianne Liu, Xiuming |
author_sort | Mao, Xuegang |
collection | PubMed |
description | Magnetotactic bacteria (MTB) use passive alignment with the Earth magnetic field as a mean to increase their navigation efficiency in horizontally stratified environments through what is known as magneto-aerotaxis (M-A). Current M-A models have been derived from MTB observations in aqueous environments, where a >80% alignment with inclined magnetic field lines produces a one-dimensional search for optimal living conditions. However, the mean magnetic alignment of MTB in their most widespread living environment, i.e. sediment, has been recently found to be <1%, greatly reducing or even eliminating the magnetotactic advantage deduced for the case of MTB in water. In order to understand the role of magnetotaxis for MTB populations living in sediment, we performed first M-A observations with lake sediment microcosms. Microcosm experiments were based on different combinations of (1) MTB position with respect to their preferred living depth (i.e. above, at, and below), and (2) magnetic field configurations (i.e. correctly and incorrectly polarized vertical fields, horizontal fields, and zero fields). Results suggest that polar magnetotaxis is more complex than implied by previous experiments, and revealed unexpected differences between two types of MTB living in the same sediment. Our main findings are: (1) all investigated MTB benefit of a clear magnetotactic advantage when they need to migrate over macroscopic distances for reaching their optimal living depth, (2) magnetotaxis is not used by all MTB under stationary, undisturbed conditions, (3) some MTB can rely only on chemotaxis for macroscopic vertical displacements in sediment while other cannot, and (4) some MTB use a fixed polar M-A mechanisms, while other can switch their M-A polarity, performing what can be considered as a mixed polar-axial M-A. These observations demonstrate that sedimentary M-A is controlled by complex mechanical, chemical, and temporal factors that are poorly reproduced in aqueous environments. |
format | Online Article Text |
id | pubmed-4102565 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41025652014-07-21 Magneto-Chemotaxis in Sediment: First Insights Mao, Xuegang Egli, Ramon Petersen, Nikolai Hanzlik, Marianne Liu, Xiuming PLoS One Research Article Magnetotactic bacteria (MTB) use passive alignment with the Earth magnetic field as a mean to increase their navigation efficiency in horizontally stratified environments through what is known as magneto-aerotaxis (M-A). Current M-A models have been derived from MTB observations in aqueous environments, where a >80% alignment with inclined magnetic field lines produces a one-dimensional search for optimal living conditions. However, the mean magnetic alignment of MTB in their most widespread living environment, i.e. sediment, has been recently found to be <1%, greatly reducing or even eliminating the magnetotactic advantage deduced for the case of MTB in water. In order to understand the role of magnetotaxis for MTB populations living in sediment, we performed first M-A observations with lake sediment microcosms. Microcosm experiments were based on different combinations of (1) MTB position with respect to their preferred living depth (i.e. above, at, and below), and (2) magnetic field configurations (i.e. correctly and incorrectly polarized vertical fields, horizontal fields, and zero fields). Results suggest that polar magnetotaxis is more complex than implied by previous experiments, and revealed unexpected differences between two types of MTB living in the same sediment. Our main findings are: (1) all investigated MTB benefit of a clear magnetotactic advantage when they need to migrate over macroscopic distances for reaching their optimal living depth, (2) magnetotaxis is not used by all MTB under stationary, undisturbed conditions, (3) some MTB can rely only on chemotaxis for macroscopic vertical displacements in sediment while other cannot, and (4) some MTB use a fixed polar M-A mechanisms, while other can switch their M-A polarity, performing what can be considered as a mixed polar-axial M-A. These observations demonstrate that sedimentary M-A is controlled by complex mechanical, chemical, and temporal factors that are poorly reproduced in aqueous environments. Public Library of Science 2014-07-17 /pmc/articles/PMC4102565/ /pubmed/25032699 http://dx.doi.org/10.1371/journal.pone.0102810 Text en © 2014 Mao et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Mao, Xuegang Egli, Ramon Petersen, Nikolai Hanzlik, Marianne Liu, Xiuming Magneto-Chemotaxis in Sediment: First Insights |
title | Magneto-Chemotaxis in Sediment: First Insights |
title_full | Magneto-Chemotaxis in Sediment: First Insights |
title_fullStr | Magneto-Chemotaxis in Sediment: First Insights |
title_full_unstemmed | Magneto-Chemotaxis in Sediment: First Insights |
title_short | Magneto-Chemotaxis in Sediment: First Insights |
title_sort | magneto-chemotaxis in sediment: first insights |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102565/ https://www.ncbi.nlm.nih.gov/pubmed/25032699 http://dx.doi.org/10.1371/journal.pone.0102810 |
work_keys_str_mv | AT maoxuegang magnetochemotaxisinsedimentfirstinsights AT egliramon magnetochemotaxisinsedimentfirstinsights AT petersennikolai magnetochemotaxisinsedimentfirstinsights AT hanzlikmarianne magnetochemotaxisinsedimentfirstinsights AT liuxiuming magnetochemotaxisinsedimentfirstinsights |