Cargando…
Pro-oncogenic function of HIP-55/Drebrin-like (DBNL) through Ser269/Thr291-phospho-sensor motifs
HIP-55 (HPK1-interacting protein of 55 kDa, also named DBNL, SH3P7, and mAbp1) is a multidomain adaptor protein that is critical for organ development and the immune response. Here, we report the coupling of HIP-55 to cell growth control through its 14-3-3-binding phospho-Ser/Thr-sensor sites. Using...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Impact Journals LLC
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102803/ https://www.ncbi.nlm.nih.gov/pubmed/24912570 |
Sumario: | HIP-55 (HPK1-interacting protein of 55 kDa, also named DBNL, SH3P7, and mAbp1) is a multidomain adaptor protein that is critical for organ development and the immune response. Here, we report the coupling of HIP-55 to cell growth control through its 14-3-3-binding phospho-Ser/Thr-sensor sites. Using affinity chromatography, we found HIP-55 formed a complex with 14-3-3 proteins, revealing a new node in phospho-Ser/Thr-mediated signaling networks. In addition, we demonstrated that HIP-55 is required for proper cell growth control. Enforced HIP-55 expression promoted proliferation, colony formation, migration, and invasion of lung cancer cells while silencing of HIP-55 reversed these effects. Importantly, HIP-55 was found to be upregulated in lung cancer cell lines and in tumor tissues of lung cancer patients. Upregulated HIP-55 was required to promote the growth of tumors in a xenograft animal model. However, tumors with S269A/T291A-mutated HIP-55, which ablates 14-3-3 binding, exhibited significantly reduced sizes, supporting a vital role of the HIP-55/14-3-3 protein interaction node in transmitting oncogenic signals. Mechanistically, HIP-55-mediated tumorigenesis activity appears to be in part mediated by antagonizing the tumor suppressor function of HPK1. Thus, the HIP-55–mediated oncogenic pathway, through S269/T291, may be exploited for the development of new therapeutic strategies. |
---|