Cargando…
Assessing the clinical utility of cancer genomic and proteomic data across tumor types
Molecular profiling of tumors promises to advance the clinical management of cancer, but the benefits of integrating molecular data with traditional clinical variables have not been systematically studied. Here we retrospectively predict patient survival using diverse molecular data (somatic copy-nu...
Autores principales: | , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102885/ https://www.ncbi.nlm.nih.gov/pubmed/24952901 http://dx.doi.org/10.1038/nbt.2940 |
_version_ | 1782327085708083200 |
---|---|
author | Yuan, Yuan Van Allen, Eliezer M. Omberg, Larsson Wagle, Nikhil Amin-Mansour, Ali Sokolov, Artem Byers, Lauren A. Xu, Yanxun Hess, Kenneth R. Diao, Lixia Han, Leng Huang, Xuelin Lawrence, Michael S. Weinstein, John N. Stuart, Josh M. Mills, Gordon B. Garraway, Levi A. Margolin, Adam A. Getz, Gad Liang, Han |
author_facet | Yuan, Yuan Van Allen, Eliezer M. Omberg, Larsson Wagle, Nikhil Amin-Mansour, Ali Sokolov, Artem Byers, Lauren A. Xu, Yanxun Hess, Kenneth R. Diao, Lixia Han, Leng Huang, Xuelin Lawrence, Michael S. Weinstein, John N. Stuart, Josh M. Mills, Gordon B. Garraway, Levi A. Margolin, Adam A. Getz, Gad Liang, Han |
author_sort | Yuan, Yuan |
collection | PubMed |
description | Molecular profiling of tumors promises to advance the clinical management of cancer, but the benefits of integrating molecular data with traditional clinical variables have not been systematically studied. Here we retrospectively predict patient survival using diverse molecular data (somatic copy-number alteration, DNA methylation and mRNA, miRNA and protein expression) from 953 samples of four cancer types from The Cancer Genome Atlas project. We found that incorporating molecular data with clinical variables yielded statistically significantly improved predictions (FDR < 0.05) for three cancers but those quantitative gains were limited (2.2–23.9%). Additional analyses revealed little predictive power across tumor types except for one case. In clinically relevant genes, we identified 10,281 somatic alterations across 12 cancer types in 2,928 of 3,277 patients (89.4%), many of which would not be revealed in single-tumor analyses. Our study provides a starting point and resources, including an open-access model evaluation platform, for building reliable prognostic and therapeutic strategies that incorporate molecular data. |
format | Online Article Text |
id | pubmed-4102885 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
record_format | MEDLINE/PubMed |
spelling | pubmed-41028852015-01-01 Assessing the clinical utility of cancer genomic and proteomic data across tumor types Yuan, Yuan Van Allen, Eliezer M. Omberg, Larsson Wagle, Nikhil Amin-Mansour, Ali Sokolov, Artem Byers, Lauren A. Xu, Yanxun Hess, Kenneth R. Diao, Lixia Han, Leng Huang, Xuelin Lawrence, Michael S. Weinstein, John N. Stuart, Josh M. Mills, Gordon B. Garraway, Levi A. Margolin, Adam A. Getz, Gad Liang, Han Nat Biotechnol Article Molecular profiling of tumors promises to advance the clinical management of cancer, but the benefits of integrating molecular data with traditional clinical variables have not been systematically studied. Here we retrospectively predict patient survival using diverse molecular data (somatic copy-number alteration, DNA methylation and mRNA, miRNA and protein expression) from 953 samples of four cancer types from The Cancer Genome Atlas project. We found that incorporating molecular data with clinical variables yielded statistically significantly improved predictions (FDR < 0.05) for three cancers but those quantitative gains were limited (2.2–23.9%). Additional analyses revealed little predictive power across tumor types except for one case. In clinically relevant genes, we identified 10,281 somatic alterations across 12 cancer types in 2,928 of 3,277 patients (89.4%), many of which would not be revealed in single-tumor analyses. Our study provides a starting point and resources, including an open-access model evaluation platform, for building reliable prognostic and therapeutic strategies that incorporate molecular data. 2014-06-22 2014-07 /pmc/articles/PMC4102885/ /pubmed/24952901 http://dx.doi.org/10.1038/nbt.2940 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Yuan, Yuan Van Allen, Eliezer M. Omberg, Larsson Wagle, Nikhil Amin-Mansour, Ali Sokolov, Artem Byers, Lauren A. Xu, Yanxun Hess, Kenneth R. Diao, Lixia Han, Leng Huang, Xuelin Lawrence, Michael S. Weinstein, John N. Stuart, Josh M. Mills, Gordon B. Garraway, Levi A. Margolin, Adam A. Getz, Gad Liang, Han Assessing the clinical utility of cancer genomic and proteomic data across tumor types |
title | Assessing the clinical utility of cancer genomic and proteomic data across tumor types |
title_full | Assessing the clinical utility of cancer genomic and proteomic data across tumor types |
title_fullStr | Assessing the clinical utility of cancer genomic and proteomic data across tumor types |
title_full_unstemmed | Assessing the clinical utility of cancer genomic and proteomic data across tumor types |
title_short | Assessing the clinical utility of cancer genomic and proteomic data across tumor types |
title_sort | assessing the clinical utility of cancer genomic and proteomic data across tumor types |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102885/ https://www.ncbi.nlm.nih.gov/pubmed/24952901 http://dx.doi.org/10.1038/nbt.2940 |
work_keys_str_mv | AT yuanyuan assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT vanalleneliezerm assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT omberglarsson assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT waglenikhil assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT aminmansourali assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT sokolovartem assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT byerslaurena assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT xuyanxun assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT hesskennethr assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT diaolixia assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT hanleng assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT huangxuelin assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT lawrencemichaels assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT weinsteinjohnn assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT stuartjoshm assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT millsgordonb assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT garrawaylevia assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT margolinadama assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT getzgad assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes AT lianghan assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes |