Cargando…

Assessing the clinical utility of cancer genomic and proteomic data across tumor types

Molecular profiling of tumors promises to advance the clinical management of cancer, but the benefits of integrating molecular data with traditional clinical variables have not been systematically studied. Here we retrospectively predict patient survival using diverse molecular data (somatic copy-nu...

Descripción completa

Detalles Bibliográficos
Autores principales: Yuan, Yuan, Van Allen, Eliezer M., Omberg, Larsson, Wagle, Nikhil, Amin-Mansour, Ali, Sokolov, Artem, Byers, Lauren A., Xu, Yanxun, Hess, Kenneth R., Diao, Lixia, Han, Leng, Huang, Xuelin, Lawrence, Michael S., Weinstein, John N., Stuart, Josh M., Mills, Gordon B., Garraway, Levi A., Margolin, Adam A., Getz, Gad, Liang, Han
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102885/
https://www.ncbi.nlm.nih.gov/pubmed/24952901
http://dx.doi.org/10.1038/nbt.2940
_version_ 1782327085708083200
author Yuan, Yuan
Van Allen, Eliezer M.
Omberg, Larsson
Wagle, Nikhil
Amin-Mansour, Ali
Sokolov, Artem
Byers, Lauren A.
Xu, Yanxun
Hess, Kenneth R.
Diao, Lixia
Han, Leng
Huang, Xuelin
Lawrence, Michael S.
Weinstein, John N.
Stuart, Josh M.
Mills, Gordon B.
Garraway, Levi A.
Margolin, Adam A.
Getz, Gad
Liang, Han
author_facet Yuan, Yuan
Van Allen, Eliezer M.
Omberg, Larsson
Wagle, Nikhil
Amin-Mansour, Ali
Sokolov, Artem
Byers, Lauren A.
Xu, Yanxun
Hess, Kenneth R.
Diao, Lixia
Han, Leng
Huang, Xuelin
Lawrence, Michael S.
Weinstein, John N.
Stuart, Josh M.
Mills, Gordon B.
Garraway, Levi A.
Margolin, Adam A.
Getz, Gad
Liang, Han
author_sort Yuan, Yuan
collection PubMed
description Molecular profiling of tumors promises to advance the clinical management of cancer, but the benefits of integrating molecular data with traditional clinical variables have not been systematically studied. Here we retrospectively predict patient survival using diverse molecular data (somatic copy-number alteration, DNA methylation and mRNA, miRNA and protein expression) from 953 samples of four cancer types from The Cancer Genome Atlas project. We found that incorporating molecular data with clinical variables yielded statistically significantly improved predictions (FDR < 0.05) for three cancers but those quantitative gains were limited (2.2–23.9%). Additional analyses revealed little predictive power across tumor types except for one case. In clinically relevant genes, we identified 10,281 somatic alterations across 12 cancer types in 2,928 of 3,277 patients (89.4%), many of which would not be revealed in single-tumor analyses. Our study provides a starting point and resources, including an open-access model evaluation platform, for building reliable prognostic and therapeutic strategies that incorporate molecular data.
format Online
Article
Text
id pubmed-4102885
institution National Center for Biotechnology Information
language English
publishDate 2014
record_format MEDLINE/PubMed
spelling pubmed-41028852015-01-01 Assessing the clinical utility of cancer genomic and proteomic data across tumor types Yuan, Yuan Van Allen, Eliezer M. Omberg, Larsson Wagle, Nikhil Amin-Mansour, Ali Sokolov, Artem Byers, Lauren A. Xu, Yanxun Hess, Kenneth R. Diao, Lixia Han, Leng Huang, Xuelin Lawrence, Michael S. Weinstein, John N. Stuart, Josh M. Mills, Gordon B. Garraway, Levi A. Margolin, Adam A. Getz, Gad Liang, Han Nat Biotechnol Article Molecular profiling of tumors promises to advance the clinical management of cancer, but the benefits of integrating molecular data with traditional clinical variables have not been systematically studied. Here we retrospectively predict patient survival using diverse molecular data (somatic copy-number alteration, DNA methylation and mRNA, miRNA and protein expression) from 953 samples of four cancer types from The Cancer Genome Atlas project. We found that incorporating molecular data with clinical variables yielded statistically significantly improved predictions (FDR < 0.05) for three cancers but those quantitative gains were limited (2.2–23.9%). Additional analyses revealed little predictive power across tumor types except for one case. In clinically relevant genes, we identified 10,281 somatic alterations across 12 cancer types in 2,928 of 3,277 patients (89.4%), many of which would not be revealed in single-tumor analyses. Our study provides a starting point and resources, including an open-access model evaluation platform, for building reliable prognostic and therapeutic strategies that incorporate molecular data. 2014-06-22 2014-07 /pmc/articles/PMC4102885/ /pubmed/24952901 http://dx.doi.org/10.1038/nbt.2940 Text en http://www.nature.com/authors/editorial_policies/license.html#terms Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms
spellingShingle Article
Yuan, Yuan
Van Allen, Eliezer M.
Omberg, Larsson
Wagle, Nikhil
Amin-Mansour, Ali
Sokolov, Artem
Byers, Lauren A.
Xu, Yanxun
Hess, Kenneth R.
Diao, Lixia
Han, Leng
Huang, Xuelin
Lawrence, Michael S.
Weinstein, John N.
Stuart, Josh M.
Mills, Gordon B.
Garraway, Levi A.
Margolin, Adam A.
Getz, Gad
Liang, Han
Assessing the clinical utility of cancer genomic and proteomic data across tumor types
title Assessing the clinical utility of cancer genomic and proteomic data across tumor types
title_full Assessing the clinical utility of cancer genomic and proteomic data across tumor types
title_fullStr Assessing the clinical utility of cancer genomic and proteomic data across tumor types
title_full_unstemmed Assessing the clinical utility of cancer genomic and proteomic data across tumor types
title_short Assessing the clinical utility of cancer genomic and proteomic data across tumor types
title_sort assessing the clinical utility of cancer genomic and proteomic data across tumor types
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102885/
https://www.ncbi.nlm.nih.gov/pubmed/24952901
http://dx.doi.org/10.1038/nbt.2940
work_keys_str_mv AT yuanyuan assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT vanalleneliezerm assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT omberglarsson assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT waglenikhil assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT aminmansourali assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT sokolovartem assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT byerslaurena assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT xuyanxun assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT hesskennethr assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT diaolixia assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT hanleng assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT huangxuelin assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT lawrencemichaels assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT weinsteinjohnn assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT stuartjoshm assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT millsgordonb assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT garrawaylevia assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT margolinadama assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT getzgad assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes
AT lianghan assessingtheclinicalutilityofcancergenomicandproteomicdataacrosstumortypes