Cargando…

In vivo and in vitro properties of STX2484: a novel non-steroidal anti-cancer compound active in taxane-resistant breast cancer

BACKGROUND: STX2484 is a novel non-steroidal compound with potent anti-proliferative activity. These studies aimed to identify STX2484's mechanism of action, in vivo efficacy and activity in taxane-resistant breast cancer models. METHODS: Effects of STX2484 and paclitaxel on proliferation, cell...

Descripción completa

Detalles Bibliográficos
Autores principales: Stengel, C, Newman, S P, Day, J M, Chander, S K, Jourdan, F L, Leese, M P, Ferrandis, E, Regis-Lydi, S, Potter, B V L, Reed, M J, Purohit, A, Foster, P A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102933/
https://www.ncbi.nlm.nih.gov/pubmed/24960406
http://dx.doi.org/10.1038/bjc.2014.188
Descripción
Sumario:BACKGROUND: STX2484 is a novel non-steroidal compound with potent anti-proliferative activity. These studies aimed to identify STX2484's mechanism of action, in vivo efficacy and activity in taxane-resistant breast cancer models. METHODS: Effects of STX2484 and paclitaxel on proliferation, cell cycle and apoptosis were assessed in vitro in drug-resistant (MCF-7(DOX)) and non-resistant cells (MCF-7(WT)). STX2484 efficacy in βIII tubulin overexpression in MCF-7 cells was also determined. Anti-angiogenic activity was quantified in vitro by a co-culture model and in vivo using a Matrigel plug assay. An MDA-MB-231 xenograft model was used to determine STX2484 efficacy in vivo. RESULTS: STX2484 is a tubulin disruptor, which induces p53 expression, Bcl2 phosphorylation, caspase-3 cleavage, cell cycle arrest and apoptosis. In addition, STX2484 is a potent anti-angiogenic agent in vitro and in vivo. In breast cancer xenografts, STX2484 (20 mg kg(−1) p.o.) suppressed tumour growth by 84% after 35 days of daily dosing, with limited toxicity. In contrast to paclitaxel, STX2484 efficacy was unchanged in two clinically relevant drug-resistant models. CONCLUSIONS: STX2484 is an orally bioavailable microtubule-disrupting agent with in vivo anti-angiogenic activity and excellent in vivo efficacy with no apparent toxicity. Crucially, STX2484 has superior efficacy to paclitaxel in models of clinical drug resistance.