Cargando…
Automated analysis of invadopodia dynamics in live cells
Multiple cell types form specialized protein complexes that are used by the cell to actively degrade the surrounding extracellular matrix. These structures are called podosomes or invadopodia and collectively referred to as invadosomes. Due to their potential importance in both healthy physiology as...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103095/ https://www.ncbi.nlm.nih.gov/pubmed/25071988 http://dx.doi.org/10.7717/peerj.462 |
_version_ | 1782327110900121600 |
---|---|
author | Berginski, Matthew E. Creed, Sarah J. Cochran, Shelly Roadcap, David W. Bear, James E. Gomez, Shawn M. |
author_facet | Berginski, Matthew E. Creed, Sarah J. Cochran, Shelly Roadcap, David W. Bear, James E. Gomez, Shawn M. |
author_sort | Berginski, Matthew E. |
collection | PubMed |
description | Multiple cell types form specialized protein complexes that are used by the cell to actively degrade the surrounding extracellular matrix. These structures are called podosomes or invadopodia and collectively referred to as invadosomes. Due to their potential importance in both healthy physiology as well as in pathological conditions such as cancer, the characterization of these structures has been of increasing interest. Following early descriptions of invadopodia, assays were developed which labelled the matrix underneath metastatic cancer cells allowing for the assessment of invadopodia activity in motile cells. However, characterization of invadopodia using these methods has traditionally been done manually with time-consuming and potentially biased quantification methods, limiting the number of experiments and the quantity of data that can be analysed. We have developed a system to automate the segmentation, tracking and quantification of invadopodia in time-lapse fluorescence image sets at both the single invadopodia level and whole cell level. We rigorously tested the ability of the method to detect changes in invadopodia formation and dynamics through the use of well-characterized small molecule inhibitors, with known effects on invadopodia. Our results demonstrate the ability of this analysis method to quantify changes in invadopodia formation from live cell imaging data in a high throughput, automated manner. |
format | Online Article Text |
id | pubmed-4103095 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-41030952014-07-28 Automated analysis of invadopodia dynamics in live cells Berginski, Matthew E. Creed, Sarah J. Cochran, Shelly Roadcap, David W. Bear, James E. Gomez, Shawn M. PeerJ Bioengineering Multiple cell types form specialized protein complexes that are used by the cell to actively degrade the surrounding extracellular matrix. These structures are called podosomes or invadopodia and collectively referred to as invadosomes. Due to their potential importance in both healthy physiology as well as in pathological conditions such as cancer, the characterization of these structures has been of increasing interest. Following early descriptions of invadopodia, assays were developed which labelled the matrix underneath metastatic cancer cells allowing for the assessment of invadopodia activity in motile cells. However, characterization of invadopodia using these methods has traditionally been done manually with time-consuming and potentially biased quantification methods, limiting the number of experiments and the quantity of data that can be analysed. We have developed a system to automate the segmentation, tracking and quantification of invadopodia in time-lapse fluorescence image sets at both the single invadopodia level and whole cell level. We rigorously tested the ability of the method to detect changes in invadopodia formation and dynamics through the use of well-characterized small molecule inhibitors, with known effects on invadopodia. Our results demonstrate the ability of this analysis method to quantify changes in invadopodia formation from live cell imaging data in a high throughput, automated manner. PeerJ Inc. 2014-07-01 /pmc/articles/PMC4103095/ /pubmed/25071988 http://dx.doi.org/10.7717/peerj.462 Text en © 2014 Berginski et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Bioengineering Berginski, Matthew E. Creed, Sarah J. Cochran, Shelly Roadcap, David W. Bear, James E. Gomez, Shawn M. Automated analysis of invadopodia dynamics in live cells |
title | Automated analysis of invadopodia dynamics in live cells |
title_full | Automated analysis of invadopodia dynamics in live cells |
title_fullStr | Automated analysis of invadopodia dynamics in live cells |
title_full_unstemmed | Automated analysis of invadopodia dynamics in live cells |
title_short | Automated analysis of invadopodia dynamics in live cells |
title_sort | automated analysis of invadopodia dynamics in live cells |
topic | Bioengineering |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103095/ https://www.ncbi.nlm.nih.gov/pubmed/25071988 http://dx.doi.org/10.7717/peerj.462 |
work_keys_str_mv | AT berginskimatthewe automatedanalysisofinvadopodiadynamicsinlivecells AT creedsarahj automatedanalysisofinvadopodiadynamicsinlivecells AT cochranshelly automatedanalysisofinvadopodiadynamicsinlivecells AT roadcapdavidw automatedanalysisofinvadopodiadynamicsinlivecells AT bearjamese automatedanalysisofinvadopodiadynamicsinlivecells AT gomezshawnm automatedanalysisofinvadopodiadynamicsinlivecells |