Cargando…

Application of a novel and automated branched DNA in situ hybridization method for the rapid and sensitive localization of mRNA molecules in plant tissues(1)

• Premise of the study: A novel branched DNA detection technology, RNAscope in situ hybridization (ISH), originally developed for use on human clinical and animal tissues, was adapted for use in plant tissue in an attempt to overcome some of the limitations associated with traditional ISH assays. •...

Descripción completa

Detalles Bibliográficos
Autores principales: Bowling, Andrew J., Pence, Heather E., Church, Jeffrey B.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Botanical Society of America 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103140/
https://www.ncbi.nlm.nih.gov/pubmed/25202621
http://dx.doi.org/10.3732/apps.1400011
Descripción
Sumario:• Premise of the study: A novel branched DNA detection technology, RNAscope in situ hybridization (ISH), originally developed for use on human clinical and animal tissues, was adapted for use in plant tissue in an attempt to overcome some of the limitations associated with traditional ISH assays. • Methods and Results: Zea mays leaf tissue was formaldehyde fixed and paraffin embedded (FFPE) and then probed with the RNAscope ISH assay for two endogenous genes, phosphoenolpyruvate carboxylase (PEPC) and phosphoenolpyruvate carboxykinase (PEPCK). Results from both manual and automated methods showed tissue- and cell-specific mRNA localization patterns expected from these well-studied genes. • Conclusions: RNAscope ISH is a sensitive method that generates high-quality, easily interpretable results from FFPE plant tissues. Automation of the RNAscope method on the Ventana Discovery Ultra platform allows significant advantages for repeatability, reduction in variability, and flexibility of workflow processes.