Cargando…
Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery
One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, i...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103836/ https://www.ncbi.nlm.nih.gov/pubmed/25036749 http://dx.doi.org/10.1371/journal.pone.0102678 |
_version_ | 1782327202124136448 |
---|---|
author | Gough, Albert H. Chen, Ning Shun, Tong Ying Lezon, Timothy R. Boltz, Robert C. Reese, Celeste E. Wagner, Jacob Vernetti, Lawrence A. Grandis, Jennifer R. Lee, Adrian V. Stern, Andrew M. Schurdak, Mark E. Taylor, D. Lansing |
author_facet | Gough, Albert H. Chen, Ning Shun, Tong Ying Lezon, Timothy R. Boltz, Robert C. Reese, Celeste E. Wagner, Jacob Vernetti, Lawrence A. Grandis, Jennifer R. Lee, Adrian V. Stern, Andrew M. Schurdak, Mark E. Taylor, D. Lansing |
author_sort | Gough, Albert H. |
collection | PubMed |
description | One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology. |
format | Online Article Text |
id | pubmed-4103836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41038362014-07-21 Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery Gough, Albert H. Chen, Ning Shun, Tong Ying Lezon, Timothy R. Boltz, Robert C. Reese, Celeste E. Wagner, Jacob Vernetti, Lawrence A. Grandis, Jennifer R. Lee, Adrian V. Stern, Andrew M. Schurdak, Mark E. Taylor, D. Lansing PLoS One Research Article One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology. Public Library of Science 2014-07-18 /pmc/articles/PMC4103836/ /pubmed/25036749 http://dx.doi.org/10.1371/journal.pone.0102678 Text en © 2014 Gough et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Gough, Albert H. Chen, Ning Shun, Tong Ying Lezon, Timothy R. Boltz, Robert C. Reese, Celeste E. Wagner, Jacob Vernetti, Lawrence A. Grandis, Jennifer R. Lee, Adrian V. Stern, Andrew M. Schurdak, Mark E. Taylor, D. Lansing Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery |
title | Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery |
title_full | Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery |
title_fullStr | Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery |
title_full_unstemmed | Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery |
title_short | Identifying and Quantifying Heterogeneity in High Content Analysis: Application of Heterogeneity Indices to Drug Discovery |
title_sort | identifying and quantifying heterogeneity in high content analysis: application of heterogeneity indices to drug discovery |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103836/ https://www.ncbi.nlm.nih.gov/pubmed/25036749 http://dx.doi.org/10.1371/journal.pone.0102678 |
work_keys_str_mv | AT goughalberth identifyingandquantifyingheterogeneityinhighcontentanalysisapplicationofheterogeneityindicestodrugdiscovery AT chenning identifyingandquantifyingheterogeneityinhighcontentanalysisapplicationofheterogeneityindicestodrugdiscovery AT shuntongying identifyingandquantifyingheterogeneityinhighcontentanalysisapplicationofheterogeneityindicestodrugdiscovery AT lezontimothyr identifyingandquantifyingheterogeneityinhighcontentanalysisapplicationofheterogeneityindicestodrugdiscovery AT boltzrobertc identifyingandquantifyingheterogeneityinhighcontentanalysisapplicationofheterogeneityindicestodrugdiscovery AT reesecelestee identifyingandquantifyingheterogeneityinhighcontentanalysisapplicationofheterogeneityindicestodrugdiscovery AT wagnerjacob identifyingandquantifyingheterogeneityinhighcontentanalysisapplicationofheterogeneityindicestodrugdiscovery AT vernettilawrencea identifyingandquantifyingheterogeneityinhighcontentanalysisapplicationofheterogeneityindicestodrugdiscovery AT grandisjenniferr identifyingandquantifyingheterogeneityinhighcontentanalysisapplicationofheterogeneityindicestodrugdiscovery AT leeadrianv identifyingandquantifyingheterogeneityinhighcontentanalysisapplicationofheterogeneityindicestodrugdiscovery AT sternandrewm identifyingandquantifyingheterogeneityinhighcontentanalysisapplicationofheterogeneityindicestodrugdiscovery AT schurdakmarke identifyingandquantifyingheterogeneityinhighcontentanalysisapplicationofheterogeneityindicestodrugdiscovery AT taylordlansing identifyingandquantifyingheterogeneityinhighcontentanalysisapplicationofheterogeneityindicestodrugdiscovery |