Cargando…
An Unsupervised Text Mining Method for Relation Extraction from Biomedical Literature
The wealth of interaction information provided in biomedical articles motivated the implementation of text mining approaches to automatically extract biomedical relations. This paper presents an unsupervised method based on pattern clustering and sentence parsing to deal with biomedical relation ext...
Autores principales: | Quan, Changqin, Wang, Meng, Ren, Fuji |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4103846/ https://www.ncbi.nlm.nih.gov/pubmed/25036529 http://dx.doi.org/10.1371/journal.pone.0102039 |
Ejemplares similares
-
Exploring supervised and unsupervised methods to detect topics in biomedical text
por: Lee, Minsuk, et al.
Publicado: (2006) -
TermInformer: unsupervised term mining and analysis in biomedical literature
por: Tiwari, Prayag, et al.
Publicado: (2020) -
Figure Text Extraction in Biomedical Literature
por: Kim, Daehyun, et al.
Publicado: (2011) -
Cluster-based text mining for extracting drug candidates for the prevention of COVID-19 from the biomedical literature
por: Supianto, Ahmad Afif, et al.
Publicado: (2023) -
iTextMine: integrated text-mining system for large-scale knowledge extraction from the literature
por: Ren, Jia, et al.
Publicado: (2018)