Cargando…
Prostate cancer metastasis-driving genes: hurdles and potential approaches in their identification
Metastatic prostate cancer is currently incurable. Metastasis is thought to result from changes in the expression of specific metastasis-driving genes in nonmetastatic prostate cancer tissue, leading to a cascade of activated downstream genes that set the metastatic process in motion. Such genes cou...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Medknow Publications & Media Pvt Ltd
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104078/ https://www.ncbi.nlm.nih.gov/pubmed/24589457 http://dx.doi.org/10.4103/1008-682X.122875 |
Sumario: | Metastatic prostate cancer is currently incurable. Metastasis is thought to result from changes in the expression of specific metastasis-driving genes in nonmetastatic prostate cancer tissue, leading to a cascade of activated downstream genes that set the metastatic process in motion. Such genes could potentially serve as effective therapeutic targets for improved management of the disease. They could be identified by comparative analysis of gene expression profiles of patient-derived metastatic and nonmetastatic prostate cancer tissues to pinpoint genes showing altered expression, followed by determining whether silencing of such genes can lead to inhibition of metastatic properties. Various hurdles encountered in this approach are discussed, including (i) the need for clinically relevant, nonmetastatic and metastatic prostate cancer tissues such as xenografts of patients’ prostate cancers developed via subrenal capsule grafting technology and (ii) limitations in the currently available methodology for identification of master regulatory genes. |
---|