Cargando…

A dendritic single-molecule fluorescent probe that is monovalent, photostable, and minimally blinking

Single-molecule fluorescence techniques have emerged as a powerful approach to understand complex biological systems. However, a challenge researchers still face is the limited photostability of nearly all organic fluorophores, including the cyanine and Alexa dyes. We report a new, monovalent probe...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Si Kyung, Shi, Xinghua, Park, Seongjin, Ha, Taekjip, Zimmerman, Steven C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104187/
https://www.ncbi.nlm.nih.gov/pubmed/23881501
http://dx.doi.org/10.1038/nchem.1706
Descripción
Sumario:Single-molecule fluorescence techniques have emerged as a powerful approach to understand complex biological systems. However, a challenge researchers still face is the limited photostability of nearly all organic fluorophores, including the cyanine and Alexa dyes. We report a new, monovalent probe that emits in the far-red region of the visible spectrum with properties desirable for single-molecule optical imaging. This probe is based on a ring-fused boron-dipyrromethene (BODIPY) core that is conjugated to a polyglycerol dendrimer (PGD). The dendrimer makes the hydrophobic fluorophore water-soluble. This probe exhibits excellent brightness, with an emission maximum of 705 nm. We observed strikingly long and stable emission from individual PGD-BODIPY probes even in the absence of anti-fading agents such as Trolox, a combined oxidizing-reducing agent often used in single-molecule studies for improving the photostability of common imaging probes. These interesting properties greatly simplify use of the fluorophore.