Cargando…
Dual role of SIRT1 in UVB-induced skin tumorigenesis
The protein deacetylase SIRT1 regulates various pathways in metabolism, aging and cancer. However, the role of SIRT1 in skin cancer remains unclear. Here, using mice with targeted deletions of SIRT1 in their epidermis in both resistant B6 and sensitive SKH1 hairless backgrounds, we show that the rol...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104262/ https://www.ncbi.nlm.nih.gov/pubmed/24441046 http://dx.doi.org/10.1038/onc.2013.583 |
_version_ | 1782327244595658752 |
---|---|
author | Ming, Mei Soltani, Keyoumars Shea, Christopher R. Li, Xiaoling He, Yu-Ying |
author_facet | Ming, Mei Soltani, Keyoumars Shea, Christopher R. Li, Xiaoling He, Yu-Ying |
author_sort | Ming, Mei |
collection | PubMed |
description | The protein deacetylase SIRT1 regulates various pathways in metabolism, aging and cancer. However, the role of SIRT1 in skin cancer remains unclear. Here, using mice with targeted deletions of SIRT1 in their epidermis in both resistant B6 and sensitive SKH1 hairless backgrounds, we show that the role of SIRT1 in skin cancer development induced by ultraviolet B (UVB) radiation is dependent on its gene dose. Keratinocyte-specific heterozygous deletion of SIRT1 promotes UVB-induced skin tumorigenesis, whereas homozygous deletion of SIRT1 suppresses skin tumor development but sensitizes the B6 mice to chronic solar injury. In mouse skin, SIRT1 is haploinsufficient for UVB-induced DNA damage repair and expression of xeroderma pigmentosum C (XPC), a protein critical for repairing UVB-induced DNA damage. As compared with normal human skin, down-regulation of SIRT1 is in parallel with down-regulation of XPC in human cutaneous squamous cell carcinoma at both the protein and mRNA levels. In contrast, homozygous SIRT1 deletion in mouse skin augments p53 acetylation and expression of its transcriptional target Noxa, and sensitizes the epidermis to UVB-induced apoptosis in vivo, while heterozygous SIRT1 deletion has no such effect. The gene dosage-dependent function of SIRT1 in DNA repair and cell survival is consistent with the dual roles of SIRT1 in UVB-induced skin tumorigenesis. Our results reveal the gene dosage-dependent in vivo functions of SIRT1 in skin tumorigenesis and may shed light on the role of SIRT1 in epithelial cancer induced by DNA damage. |
format | Online Article Text |
id | pubmed-4104262 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
record_format | MEDLINE/PubMed |
spelling | pubmed-41042622015-07-15 Dual role of SIRT1 in UVB-induced skin tumorigenesis Ming, Mei Soltani, Keyoumars Shea, Christopher R. Li, Xiaoling He, Yu-Ying Oncogene Article The protein deacetylase SIRT1 regulates various pathways in metabolism, aging and cancer. However, the role of SIRT1 in skin cancer remains unclear. Here, using mice with targeted deletions of SIRT1 in their epidermis in both resistant B6 and sensitive SKH1 hairless backgrounds, we show that the role of SIRT1 in skin cancer development induced by ultraviolet B (UVB) radiation is dependent on its gene dose. Keratinocyte-specific heterozygous deletion of SIRT1 promotes UVB-induced skin tumorigenesis, whereas homozygous deletion of SIRT1 suppresses skin tumor development but sensitizes the B6 mice to chronic solar injury. In mouse skin, SIRT1 is haploinsufficient for UVB-induced DNA damage repair and expression of xeroderma pigmentosum C (XPC), a protein critical for repairing UVB-induced DNA damage. As compared with normal human skin, down-regulation of SIRT1 is in parallel with down-regulation of XPC in human cutaneous squamous cell carcinoma at both the protein and mRNA levels. In contrast, homozygous SIRT1 deletion in mouse skin augments p53 acetylation and expression of its transcriptional target Noxa, and sensitizes the epidermis to UVB-induced apoptosis in vivo, while heterozygous SIRT1 deletion has no such effect. The gene dosage-dependent function of SIRT1 in DNA repair and cell survival is consistent with the dual roles of SIRT1 in UVB-induced skin tumorigenesis. Our results reveal the gene dosage-dependent in vivo functions of SIRT1 in skin tumorigenesis and may shed light on the role of SIRT1 in epithelial cancer induced by DNA damage. 2014-01-20 2015-01-15 /pmc/articles/PMC4104262/ /pubmed/24441046 http://dx.doi.org/10.1038/onc.2013.583 Text en Users may view, print, copy, download and text and data- mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use: http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article Ming, Mei Soltani, Keyoumars Shea, Christopher R. Li, Xiaoling He, Yu-Ying Dual role of SIRT1 in UVB-induced skin tumorigenesis |
title | Dual role of SIRT1 in UVB-induced skin tumorigenesis |
title_full | Dual role of SIRT1 in UVB-induced skin tumorigenesis |
title_fullStr | Dual role of SIRT1 in UVB-induced skin tumorigenesis |
title_full_unstemmed | Dual role of SIRT1 in UVB-induced skin tumorigenesis |
title_short | Dual role of SIRT1 in UVB-induced skin tumorigenesis |
title_sort | dual role of sirt1 in uvb-induced skin tumorigenesis |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104262/ https://www.ncbi.nlm.nih.gov/pubmed/24441046 http://dx.doi.org/10.1038/onc.2013.583 |
work_keys_str_mv | AT mingmei dualroleofsirt1inuvbinducedskintumorigenesis AT soltanikeyoumars dualroleofsirt1inuvbinducedskintumorigenesis AT sheachristopherr dualroleofsirt1inuvbinducedskintumorigenesis AT lixiaoling dualroleofsirt1inuvbinducedskintumorigenesis AT heyuying dualroleofsirt1inuvbinducedskintumorigenesis |