Cargando…
Inferring multi-target QSAR models with taxonomy-based multi-task learning
BACKGROUND: A plethora of studies indicate that the development of multi-target drugs is beneficial for complex diseases like cancer. Accurate QSAR models for each of the desired targets assist the optimization of a lead candidate by the prediction of affinity profiles. Often, the targets of a multi...
Autores principales: | Rosenbaum, Lars, Dörr, Alexander, Bauer, Matthias R, Boeckler, Frank M, Zell, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104930/ https://www.ncbi.nlm.nih.gov/pubmed/23842210 http://dx.doi.org/10.1186/1758-2946-5-33 |
Ejemplares similares
-
Transfer and Multi-task Learning in QSAR Modeling: Advances and Challenges
por: Simões, Rodolfo S., et al.
Publicado: (2018) -
A ranking method for the concurrent learning of compounds with various activity profiles
por: Dörr, Alexander, et al.
Publicado: (2015) -
Optimization and visualization of the edge weights in optimal assignment methods for virtual screening
por: Rosenbaum, Lars, et al.
Publicado: (2013) -
Recent Advances in Fragment-Based QSAR and Multi-Dimensional QSAR Methods
por: Myint, Kyaw Zeyar, et al.
Publicado: (2010) -
Beyond descriptor vectors: QSAR modelling using structural similarity
por: Zell, Andreas, et al.
Publicado: (2008)