Cargando…

Signatures for Mass Spectrometry Data Quality

[Image: see text] Ensuring data quality and proper instrument functionality is a prerequisite for scientific investigation. Manual quality assurance is time-consuming and subjective. Metrics for describing liquid chromatography mass spectrometry (LC–MS) data have been developed; however, the wide va...

Descripción completa

Detalles Bibliográficos
Autores principales: Amidan, Brett G., Orton, Daniel J., LaMarche, Brian L., Monroe, Matthew E., Moore, Ronald J., Venzin, Alexander M., Smith, Richard D., Sego, Landon H., Tardiff, Mark F., Payne, Samuel H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104976/
https://www.ncbi.nlm.nih.gov/pubmed/24611607
http://dx.doi.org/10.1021/pr401143e
_version_ 1782327300444913664
author Amidan, Brett G.
Orton, Daniel J.
LaMarche, Brian L.
Monroe, Matthew E.
Moore, Ronald J.
Venzin, Alexander M.
Smith, Richard D.
Sego, Landon H.
Tardiff, Mark F.
Payne, Samuel H.
author_facet Amidan, Brett G.
Orton, Daniel J.
LaMarche, Brian L.
Monroe, Matthew E.
Moore, Ronald J.
Venzin, Alexander M.
Smith, Richard D.
Sego, Landon H.
Tardiff, Mark F.
Payne, Samuel H.
author_sort Amidan, Brett G.
collection PubMed
description [Image: see text] Ensuring data quality and proper instrument functionality is a prerequisite for scientific investigation. Manual quality assurance is time-consuming and subjective. Metrics for describing liquid chromatography mass spectrometry (LC–MS) data have been developed; however, the wide variety of LC–MS instruments and configurations precludes applying a simple cutoff. Using 1150 manually classified quality control (QC) data sets, we trained logistic regression classification models to predict whether a data set is in or out of control. Model parameters were optimized by minimizing a loss function that accounts for the trade-off between false positive and false negative errors. The classifier models detected bad data sets with high sensitivity while maintaining high specificity. Moreover, the composite classifier was dramatically more specific than single metrics. Finally, we evaluated the performance of the classifier on a separate validation set where it performed comparably to the results for the testing/training data sets. By presenting the methods and software used to create the classifier, other groups can create a classifier for their specific QC regimen, which is highly variable lab-to-lab. In total, this manuscript presents 3400 LC–MS data sets for the same QC sample (whole cell lysate of Shewanella oneidensis), deposited to the ProteomeXchange with identifiers PXD000320–PXD000324.
format Online
Article
Text
id pubmed-4104976
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-41049762014-07-21 Signatures for Mass Spectrometry Data Quality Amidan, Brett G. Orton, Daniel J. LaMarche, Brian L. Monroe, Matthew E. Moore, Ronald J. Venzin, Alexander M. Smith, Richard D. Sego, Landon H. Tardiff, Mark F. Payne, Samuel H. J Proteome Res [Image: see text] Ensuring data quality and proper instrument functionality is a prerequisite for scientific investigation. Manual quality assurance is time-consuming and subjective. Metrics for describing liquid chromatography mass spectrometry (LC–MS) data have been developed; however, the wide variety of LC–MS instruments and configurations precludes applying a simple cutoff. Using 1150 manually classified quality control (QC) data sets, we trained logistic regression classification models to predict whether a data set is in or out of control. Model parameters were optimized by minimizing a loss function that accounts for the trade-off between false positive and false negative errors. The classifier models detected bad data sets with high sensitivity while maintaining high specificity. Moreover, the composite classifier was dramatically more specific than single metrics. Finally, we evaluated the performance of the classifier on a separate validation set where it performed comparably to the results for the testing/training data sets. By presenting the methods and software used to create the classifier, other groups can create a classifier for their specific QC regimen, which is highly variable lab-to-lab. In total, this manuscript presents 3400 LC–MS data sets for the same QC sample (whole cell lysate of Shewanella oneidensis), deposited to the ProteomeXchange with identifiers PXD000320–PXD000324. American Chemical Society 2014-03-10 2014-04-04 /pmc/articles/PMC4104976/ /pubmed/24611607 http://dx.doi.org/10.1021/pr401143e Text en Copyright © 2014 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes.
spellingShingle Amidan, Brett G.
Orton, Daniel J.
LaMarche, Brian L.
Monroe, Matthew E.
Moore, Ronald J.
Venzin, Alexander M.
Smith, Richard D.
Sego, Landon H.
Tardiff, Mark F.
Payne, Samuel H.
Signatures for Mass Spectrometry Data Quality
title Signatures for Mass Spectrometry Data Quality
title_full Signatures for Mass Spectrometry Data Quality
title_fullStr Signatures for Mass Spectrometry Data Quality
title_full_unstemmed Signatures for Mass Spectrometry Data Quality
title_short Signatures for Mass Spectrometry Data Quality
title_sort signatures for mass spectrometry data quality
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4104976/
https://www.ncbi.nlm.nih.gov/pubmed/24611607
http://dx.doi.org/10.1021/pr401143e
work_keys_str_mv AT amidanbrettg signaturesformassspectrometrydataquality
AT ortondanielj signaturesformassspectrometrydataquality
AT lamarchebrianl signaturesformassspectrometrydataquality
AT monroematthewe signaturesformassspectrometrydataquality
AT mooreronaldj signaturesformassspectrometrydataquality
AT venzinalexanderm signaturesformassspectrometrydataquality
AT smithrichardd signaturesformassspectrometrydataquality
AT segolandonh signaturesformassspectrometrydataquality
AT tardiffmarkf signaturesformassspectrometrydataquality
AT paynesamuelh signaturesformassspectrometrydataquality