Cargando…
A Kernel-Based Multivariate Feature Selection Method for Microarray Data Classification
High dimensionality and small sample sizes, and their inherent risk of overfitting, pose great challenges for constructing efficient classifiers in microarray data classification. Therefore a feature selection technique should be conducted prior to data classification to enhance prediction performan...
Autores principales: | Sun, Shiquan, Peng, Qinke, Shakoor, Adnan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105478/ https://www.ncbi.nlm.nih.gov/pubmed/25048512 http://dx.doi.org/10.1371/journal.pone.0102541 |
Ejemplares similares
-
Kernelized partial least squares for feature reduction and classification of gene microarray data
por: Land, Walker H, et al.
Publicado: (2011) -
Kernel-based distance metric learning for microarray data classification
por: Xiong, Huilin, et al.
Publicado: (2006) -
Classification of heterogeneous microarray data by maximum entropy kernel
por: Fujibuchi, Wataru, et al.
Publicado: (2007) -
Efficient feature selection and classification for microarray data
por: Li, Zifa, et al.
Publicado: (2018) -
Classification of Microarray Data Using Kernel Fuzzy Inference System
por: Kumar, Mukesh, et al.
Publicado: (2014)