Cargando…
Fuzzy technique for microcalcifications clustering in digital mammograms
BACKGROUND: Mammography has established itself as the most efficient technique for the identification of the pathological breast lesions. Among the various types of lesions, microcalcifications are the most difficult to identify since they are quite small (0.1-1.0 mm) and often poorly contrasted aga...
Autores principales: | Vivona, Letizia, Cascio, Donato, Fauci, Francesco, Raso, Giuseppe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4105893/ https://www.ncbi.nlm.nih.gov/pubmed/24961885 http://dx.doi.org/10.1186/1471-2342-14-23 |
Ejemplares similares
-
Classification of Microcalcification Clusters in Digital Mammograms Using a Stack Generalization Based Classifier †
por: Alam, Nashid, et al.
Publicado: (2019) -
Automatic Pectoral Muscle Removal and Microcalcification Localization in Digital Mammograms
por: Gómez, Kevin Alejandro Hernández, et al.
Publicado: (2021) -
Bayesian Classifier with Simplified Learning Phase for Detecting Microcalcifications in Digital Mammograms
por: Zyout, Imad, et al.
Publicado: (2009) -
Digital subtraction of temporally sequential mammograms for improved detection and classification of microcalcifications
por: Loizidou, Kosmia, et al.
Publicado: (2021) -
Mammographic images segmentation based on chaotic map clustering algorithm
por: Iacomi, Marius, et al.
Publicado: (2014)