Cargando…

How to measure propagation velocity in cardiac tissue: a simulation study

To estimate conduction velocities from activation times in myocardial tissue, the “average vector” method computes all the local activation directions and velocities from local activation times and estimates the fastest and slowest propagation speed from these local values. The “single vector” metho...

Descripción completa

Detalles Bibliográficos
Autores principales: Linnenbank, Andre C., de Bakker, Jacques M. T., Coronel, Ruben
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106028/
https://www.ncbi.nlm.nih.gov/pubmed/25101004
http://dx.doi.org/10.3389/fphys.2014.00267
Descripción
Sumario:To estimate conduction velocities from activation times in myocardial tissue, the “average vector” method computes all the local activation directions and velocities from local activation times and estimates the fastest and slowest propagation speed from these local values. The “single vector” method uses areas of apparent uniform elliptical spread of activation and chooses a single vector for the estimated longitudinal velocity and one for the transversal. A simulation study was performed to estimate the influence of grid size, anisotropy, and vector angle bin size. The results indicate that the “average vector” method can best be used if the grid- or bin-size is large, although systematic errors occur. The “single vector” method performs better, but requires human intervention for the definition of fiber direction. The average vector method can be automated.