Cargando…
Robust Deep Network with Maximum Correntropy Criterion for Seizure Detection
Effective seizure detection from long-term EEG is highly important for seizure diagnosis. Existing methods usually design the feature and classifier individually, while little work has been done for the simultaneous optimization of the two parts. This work proposes a deep network to jointly learn a...
Autores principales: | Qi, Yu, Wang, Yueming, Zhang, Jianmin, Zhu, Junming, Zheng, Xiaoxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi Publishing Corporation
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106070/ https://www.ncbi.nlm.nih.gov/pubmed/25105136 http://dx.doi.org/10.1155/2014/703816 |
Ejemplares similares
-
Adaptive Robust Unscented Kalman Filter via Fading Factor and Maximum Correntropy Criterion
por: Deng, Zhihong, et al.
Publicado: (2018) -
Robust 3D point cloud registration based on bidirectional Maximum Correntropy Criterion
por: Zhang, Xuetao, et al.
Publicado: (2018) -
Newtonian-Type Adaptive Filtering Based on the Maximum Correntropy Criterion
por: Yue, Pengcheng, et al.
Publicado: (2020) -
Online Gradient Descent for Kernel-Based Maximum Correntropy Criterion
por: Wang, Baobin, et al.
Publicado: (2019) -
Adaptive Pressure Control System Based on the Maximum Correntropy Criterion
por: Flores, Thommas Kevin Sales, et al.
Publicado: (2021)