Cargando…
Antidepressant treatment response is modulated by genetic and environmental factors and their interactions
Although there is a wide variety of antidepressants with different mechanisms of action available, the efficacy of treatment is not satisfactory. Genetic factors are presumed to play a role in differences in medication response; however, available evidence is controversial. Even genome-wide associat...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4106212/ https://www.ncbi.nlm.nih.gov/pubmed/25053968 http://dx.doi.org/10.1186/1744-859X-13-17 |
Sumario: | Although there is a wide variety of antidepressants with different mechanisms of action available, the efficacy of treatment is not satisfactory. Genetic factors are presumed to play a role in differences in medication response; however, available evidence is controversial. Even genome-wide association studies failed to identify genes or regions which would consequently influence treatment response. We conducted a literature review in order to uncover possible mechanisms concealing the direct effects of genetic variants, focusing mainly on reports from large-scale studies including STAR*D or GENDEP. We observed that inclusion of environmental factors, gene-environment and gene-gene interactions in the model improves the probability of identifying genetic modulator effects of antidepressant response. It could be difficult to determine which allele of a polymorphism is the risk factor for poor treatment outcome because depending on the acting environmental factors different alleles could be advantageous to improve treatment response. Moreover, genetic variants tend to show better association with certain intermediate phenotypes linked to depression because these are more objective and detectable than traditional treatment outcomes. Thus, detailed modeling of environmental factors and their interactions with different genetic pathways could significantly improve our understanding of antidepressant efficacy. In addition, the complexity of depression itself demands a more comprehensive analysis of symptom trajectories if we are to extract useful information which could be used in the personalization of antidepressant treatment. |
---|