Cargando…

Effective inhibition of colon cancer cell growth with MgAl-layered double hydroxide (LDH) loaded 5-FU and PI3K/mTOR dual inhibitor BEZ-235 through apoptotic pathways

Colon cancer is the third most common cancer and the third largest cause of cancer-related death. Fluorouracil (5-FU) is the front-line chemotherapeutic agent for colon cancer. However, its response rate is less than 60%, even in combination with other chemotherapeutic agents. The side effects of 5-...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Jiezhong, Shao, Renfu, Li, Li, Xu, Zhi Ping, Gu, Wenyi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove Medical Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107171/
https://www.ncbi.nlm.nih.gov/pubmed/25075187
http://dx.doi.org/10.2147/IJN.S61633
Descripción
Sumario:Colon cancer is the third most common cancer and the third largest cause of cancer-related death. Fluorouracil (5-FU) is the front-line chemotherapeutic agent for colon cancer. However, its response rate is less than 60%, even in combination with other chemotherapeutic agents. The side effects of 5-FU also limit its application. Nanoparticles have been used to deliver 5-FU, to increase its effectiveness and reduce side effects. Another common approach for colon cancer treatment is targeted therapy against the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway. A recently-invented inhibitor of this pathway, BEZ-235, has been tested in several clinical trials and has shown effectiveness and low side effects. Thus, it is a very promising drug for colon cancer treatment. The combination of these two drugs, especially nanoparticle-packed 5-FU and BEZ-235, has not been studied. In the present study, we demonstrated that nanoparticles of layered double hydroxide (LDH) loaded with 5-FU were more effective than a free drug at inhibiting colon cancer cell growth, and that a combination treatment with BEZ-235 further increased the sensitivity of colon cancer cells to the treatment of LDH-packed 5-FU (LDH-5-FU). BEZ-235 alone can decrease colon cancer HCT-116 cell viability to 46% of the control, and the addition of LDH-5-FU produced a greater effect, reducing cell survival to 8% of the control. Our data indicate that the combination therapy of nanodelivered 5-FU with a PI3K/Akt inhibitor, BEZ-235, may promise a more effective approach for colon cancer treatment.