Cargando…
Learning restricted Boolean network model by time-series data
Restricted Boolean networks are simplified Boolean networks that are required for either negative or positive regulations between genes. Higa et al. (BMC Proc 5:S5, 2011) proposed a three-rule algorithm to infer a restricted Boolean network from time-series data. However, the algorithm suffers from...
Autores principales: | Ouyang, Hongjia, Fang, Jie, Shen, Liangzhong, Dougherty, Edward R, Liu, Wenbin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4107581/ https://www.ncbi.nlm.nih.gov/pubmed/25093019 http://dx.doi.org/10.1186/s13637-014-0010-5 |
Ejemplares similares
-
Using the minimum description length principle to reduce the rate of false positives of best-fit algorithms
por: Fang, Jie, et al.
Publicado: (2014) -
Constraint-based analysis of gene interactions using restricted boolean networks and time-series data
por: Higa, Carlos HA, et al.
Publicado: (2011) -
Inference of Boolean Networks Using Sensitivity Regularization
por: Liu, Wenbin, et al.
Publicado: (2008) -
An efficient algorithm to identify the optimal one-bit perturbation based on the basin-of-state size of Boolean networks
por: Hu, Mingxiao, et al.
Publicado: (2016) -
An Evaluation of Methods for Inferring Boolean Networks from Time-Series Data
por: Berestovsky, Natalie, et al.
Publicado: (2013)