Cargando…

The usefulness of “corrected” body mass index vs. self-reported body mass index: comparing the population distributions, sensitivity, specificity, and predictive utility of three correction equations using Canadian population-based data

BACKGROUND: National data on body mass index (BMI), computed from self-reported height and weight, is readily available for many populations including the Canadian population. Because self-reported weight is found to be systematically under-reported, it has been proposed that the bias in self-report...

Descripción completa

Detalles Bibliográficos
Autores principales: Dutton, Daniel J, McLaren, Lindsay
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108015/
https://www.ncbi.nlm.nih.gov/pubmed/24885210
http://dx.doi.org/10.1186/1471-2458-14-430
Descripción
Sumario:BACKGROUND: National data on body mass index (BMI), computed from self-reported height and weight, is readily available for many populations including the Canadian population. Because self-reported weight is found to be systematically under-reported, it has been proposed that the bias in self-reported BMI can be corrected using equations derived from data sets which include both self-reported and measured height and weight. Such correction equations have been developed and adopted. We aim to evaluate the usefulness (i.e., distributional similarity; sensitivity and specificity; and predictive utility vis-à-vis disease outcomes) of existing and new correction equations in population-based research. METHODS: The Canadian Community Health Surveys from 2005 and 2008 include both measured and self-reported values of height and weight, which allows for construction and evaluation of correction equations. We focused on adults age 18–65, and compared three correction equations (two correcting weight only, and one correcting BMI) against self-reported and measured BMI. We first compared population distributions of BMI. Second, we compared the sensitivity and specificity of self-reported BMI and corrected BMI against measured BMI. Third, we compared the self-reported and corrected BMI in terms of association with health outcomes using logistic regression. RESULTS: All corrections outperformed self-report when estimating the full BMI distribution; the weight-only correction outperformed the BMI-only correction for females in the 23–28 kg/m(2) BMI range. In terms of sensitivity/specificity, when estimating obesity prevalence, corrected values of BMI (from any equation) were superior to self-report. In terms of modelling BMI-disease outcome associations, findings were mixed, with no correction proving consistently superior to self-report. CONCLUSIONS: If researchers are interested in modelling the full population distribution of BMI, or estimating the prevalence of obesity in a population, then a correction of any kind included in this study is recommended. If the researcher is interested in using BMI as a predictor variable for modelling disease, then both self-reported and corrected BMI result in biased estimates of association.