Cargando…
Seamless Metallic Coating and Surface Adhesion of Self-Assembled Bioinspired Nanostructures Based on Di-(3,4-dihydroxy-l-phenylalanine) Peptide Motif
[Image: see text] The noncoded aromatic 3,4-dihydroxy-l-phenylalanine (DOPA) amino acid has a pivotal role in the remarkable adhesive properties displayed by marine mussels. These properties have inspired the design of adhesive chemical entities through various synthetic approaches. DOPA-containing...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108209/ https://www.ncbi.nlm.nih.gov/pubmed/24936704 http://dx.doi.org/10.1021/nn502240r |
_version_ | 1782327724086394880 |
---|---|
author | Fichman, Galit Adler-Abramovich, Lihi Manohar, Suresh Mironi-Harpaz, Iris Guterman, Tom Seliktar, Dror Messersmith, Phillip B. Gazit, Ehud |
author_facet | Fichman, Galit Adler-Abramovich, Lihi Manohar, Suresh Mironi-Harpaz, Iris Guterman, Tom Seliktar, Dror Messersmith, Phillip B. Gazit, Ehud |
author_sort | Fichman, Galit |
collection | PubMed |
description | [Image: see text] The noncoded aromatic 3,4-dihydroxy-l-phenylalanine (DOPA) amino acid has a pivotal role in the remarkable adhesive properties displayed by marine mussels. These properties have inspired the design of adhesive chemical entities through various synthetic approaches. DOPA-containing bioinspired polymers have a broad functional appeal beyond adhesion due to the diverse chemical interactions presented by the catechol moieties. Here, we harnessed the molecular self-assembly abilities of very short peptide motifs to develop analogous DOPA-containing supramolecular polymers. The DOPA-containing DOPA–DOPA and Fmoc–DOPA–DOPA building blocks were designed by substituting the phenylalanines in the well-studied diphenylalanine self-assembling motif and its 9-fluorenylmethoxycarbonyl (Fmoc)-protected derivative. These peptides self-organized into fibrillar nanoassemblies, displaying high density of catechol functional groups. Furthermore, the Fmoc–DOPA–DOPA peptide was found to act as a low molecular weight hydrogelator, forming self-supporting hydrogel which was rheologically characterized. We studied these assemblies using electron microscopy and explored their applicative potential by examining their ability to spontaneously reduce metal cations into elementary metal. By applying ionic silver to the hydrogel, we observed efficient reduction into silver nanoparticles and the remarkable seamless metallic coating of the assemblies. Similar redox abilities were observed with the DOPA–DOPA assemblies. In an effort to impart adhesiveness to the obtained assemblies, we incorporated lysine (Lys) into the Fmoc–DOPA–DOPA building block. The assemblies of Fmoc–DOPA–DOPA–Lys were capable of gluing together glass surfaces, and their adhesion properties were investigated using atomic force microscopy. Taken together, a class of DOPA-containing self-assembling peptides was designed. These nanoassemblies display unique properties and can serve as multifunctional platforms for various biotechnological applications. |
format | Online Article Text |
id | pubmed-4108209 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-41082092015-06-17 Seamless Metallic Coating and Surface Adhesion of Self-Assembled Bioinspired Nanostructures Based on Di-(3,4-dihydroxy-l-phenylalanine) Peptide Motif Fichman, Galit Adler-Abramovich, Lihi Manohar, Suresh Mironi-Harpaz, Iris Guterman, Tom Seliktar, Dror Messersmith, Phillip B. Gazit, Ehud ACS Nano [Image: see text] The noncoded aromatic 3,4-dihydroxy-l-phenylalanine (DOPA) amino acid has a pivotal role in the remarkable adhesive properties displayed by marine mussels. These properties have inspired the design of adhesive chemical entities through various synthetic approaches. DOPA-containing bioinspired polymers have a broad functional appeal beyond adhesion due to the diverse chemical interactions presented by the catechol moieties. Here, we harnessed the molecular self-assembly abilities of very short peptide motifs to develop analogous DOPA-containing supramolecular polymers. The DOPA-containing DOPA–DOPA and Fmoc–DOPA–DOPA building blocks were designed by substituting the phenylalanines in the well-studied diphenylalanine self-assembling motif and its 9-fluorenylmethoxycarbonyl (Fmoc)-protected derivative. These peptides self-organized into fibrillar nanoassemblies, displaying high density of catechol functional groups. Furthermore, the Fmoc–DOPA–DOPA peptide was found to act as a low molecular weight hydrogelator, forming self-supporting hydrogel which was rheologically characterized. We studied these assemblies using electron microscopy and explored their applicative potential by examining their ability to spontaneously reduce metal cations into elementary metal. By applying ionic silver to the hydrogel, we observed efficient reduction into silver nanoparticles and the remarkable seamless metallic coating of the assemblies. Similar redox abilities were observed with the DOPA–DOPA assemblies. In an effort to impart adhesiveness to the obtained assemblies, we incorporated lysine (Lys) into the Fmoc–DOPA–DOPA building block. The assemblies of Fmoc–DOPA–DOPA–Lys were capable of gluing together glass surfaces, and their adhesion properties were investigated using atomic force microscopy. Taken together, a class of DOPA-containing self-assembling peptides was designed. These nanoassemblies display unique properties and can serve as multifunctional platforms for various biotechnological applications. American Chemical Society 2014-06-17 2014-07-22 /pmc/articles/PMC4108209/ /pubmed/24936704 http://dx.doi.org/10.1021/nn502240r Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) |
spellingShingle | Fichman, Galit Adler-Abramovich, Lihi Manohar, Suresh Mironi-Harpaz, Iris Guterman, Tom Seliktar, Dror Messersmith, Phillip B. Gazit, Ehud Seamless Metallic Coating and Surface Adhesion of Self-Assembled Bioinspired Nanostructures Based on Di-(3,4-dihydroxy-l-phenylalanine) Peptide Motif |
title | Seamless Metallic Coating and Surface Adhesion of Self-Assembled Bioinspired Nanostructures Based on Di-(3,4-dihydroxy-l-phenylalanine) Peptide Motif |
title_full | Seamless Metallic Coating and Surface Adhesion of Self-Assembled Bioinspired Nanostructures Based on Di-(3,4-dihydroxy-l-phenylalanine) Peptide Motif |
title_fullStr | Seamless Metallic Coating and Surface Adhesion of Self-Assembled Bioinspired Nanostructures Based on Di-(3,4-dihydroxy-l-phenylalanine) Peptide Motif |
title_full_unstemmed | Seamless Metallic Coating and Surface Adhesion of Self-Assembled Bioinspired Nanostructures Based on Di-(3,4-dihydroxy-l-phenylalanine) Peptide Motif |
title_short | Seamless Metallic Coating and Surface Adhesion of Self-Assembled Bioinspired Nanostructures Based on Di-(3,4-dihydroxy-l-phenylalanine) Peptide Motif |
title_sort | seamless metallic coating and surface adhesion of self-assembled bioinspired nanostructures based on di-(3,4-dihydroxy-l-phenylalanine) peptide motif |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108209/ https://www.ncbi.nlm.nih.gov/pubmed/24936704 http://dx.doi.org/10.1021/nn502240r |
work_keys_str_mv | AT fichmangalit seamlessmetalliccoatingandsurfaceadhesionofselfassembledbioinspirednanostructuresbasedondi34dihydroxylphenylalaninepeptidemotif AT adlerabramovichlihi seamlessmetalliccoatingandsurfaceadhesionofselfassembledbioinspirednanostructuresbasedondi34dihydroxylphenylalaninepeptidemotif AT manoharsuresh seamlessmetalliccoatingandsurfaceadhesionofselfassembledbioinspirednanostructuresbasedondi34dihydroxylphenylalaninepeptidemotif AT mironiharpaziris seamlessmetalliccoatingandsurfaceadhesionofselfassembledbioinspirednanostructuresbasedondi34dihydroxylphenylalaninepeptidemotif AT gutermantom seamlessmetalliccoatingandsurfaceadhesionofselfassembledbioinspirednanostructuresbasedondi34dihydroxylphenylalaninepeptidemotif AT seliktardror seamlessmetalliccoatingandsurfaceadhesionofselfassembledbioinspirednanostructuresbasedondi34dihydroxylphenylalaninepeptidemotif AT messersmithphillipb seamlessmetalliccoatingandsurfaceadhesionofselfassembledbioinspirednanostructuresbasedondi34dihydroxylphenylalaninepeptidemotif AT gazitehud seamlessmetalliccoatingandsurfaceadhesionofselfassembledbioinspirednanostructuresbasedondi34dihydroxylphenylalaninepeptidemotif |