Cargando…
Single Administration of p2TA (AB103), a CD28 Antagonist Peptide, Prevents Inflammatory and Thrombotic Reactions and Protects against Gastrointestinal Injury in Total-Body Irradiated Mice
The goal of this study was to elucidate the action of the CD28 mimetic peptide p2TA (AB103) that attenuates an excessive inflammatory response in mitigating radiation-induced inflammatory injuries. BALB/c and A/J mice were divided into four groups: Control (C), Peptide (P; 5 mg/kg of p2TA peptide),...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108308/ https://www.ncbi.nlm.nih.gov/pubmed/25054224 http://dx.doi.org/10.1371/journal.pone.0101161 |
Sumario: | The goal of this study was to elucidate the action of the CD28 mimetic peptide p2TA (AB103) that attenuates an excessive inflammatory response in mitigating radiation-induced inflammatory injuries. BALB/c and A/J mice were divided into four groups: Control (C), Peptide (P; 5 mg/kg of p2TA peptide), Radiation (R; total body irradiation with 8 Gy γ-rays), and Radiation + Peptide (RP; irradiation followed by p2TA peptide 24 h later). Gastrointestinal tissue damage was evaluated by analysis of jejunum histopathology and immunohistochemistry for cell proliferation (Cyclin D1) and inflammation (COX-2) markers, as well as the presence of macrophages (F4/80). Pro-inflammatory cytokines IL-6 and KC as well as fibrinogen were quantified in plasma samples obtained from the same mice. Our results demonstrated that administration of p2TA peptide significantly reduced the irradiation-induced increase of IL-6 and fibrinogen in plasma 7 days after exposure. Seven days after total body irradiation with 8 Gy of gamma rays numbers of intestinal crypt cells were reduced and villi were shorter in irradiated animals compared to the controls. The p2TA peptide delivery 24 h after irradiation led to improved morphology of villi and crypts, increased Cyclin D1 expression, decreased COX-2 staining and decreased numbers of macrophages in small intestine of irradiated mice. Our study suggests that attenuation of CD28 signaling is a promising therapeutic approach for mitigation of radiation-induced tissue injury. |
---|