Cargando…
Mining TCGA Data Using Boolean Implications
Boolean implications (if-then rules) provide a conceptually simple, uniform and highly scalable way to find associations between pairs of random variables. In this paper, we propose to use Boolean implications to find relationships between variables of different data types (mutation, copy number alt...
Autores principales: | Sinha, Subarna, Tsang, Emily K., Zeng, Haoyang, Meister, Michela, Dill, David L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108374/ https://www.ncbi.nlm.nih.gov/pubmed/25054200 http://dx.doi.org/10.1371/journal.pone.0102119 |
Ejemplares similares
-
Boolean implication networks derived from large scale, whole genome microarray datasets
por: Sahoo, Debashis, et al.
Publicado: (2008) -
The Power of Boolean Implication Networks
por: Sahoo, Debashis
Publicado: (2012) -
TCGA and ESTIMATE data mining to identify potential prognostic biomarkers in HCC patients
por: He, Guolin, et al.
Publicado: (2020) -
TCGA Expedition: A Data Acquisition and Management System for TCGA Data
por: Chandran, Uma R., et al.
Publicado: (2016) -
Systematic discovery of mutation-specific synthetic lethals by mining pan-cancer human primary tumor data
por: Sinha, Subarna, et al.
Publicado: (2017)