Cargando…
Application of genetic algorithms and constructive neural networks for the analysis of microarray cancer data
BACKGROUND: Extracting relevant information from microarray data is a very complex task due to the characteristics of the data sets, as they comprise a large number of features while few samples are generally available. In this sense, feature selection is a very important aspect of the analysis help...
Autores principales: | Luque-Baena, Rafael Marcos, Urda, Daniel, Subirats, Jose Luis, Franco, Leonardo, Jerez, Jose M |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4108856/ https://www.ncbi.nlm.nih.gov/pubmed/25077572 http://dx.doi.org/10.1186/1742-4682-11-S1-S7 |
Ejemplares similares
-
Advanced Online Survival Analysis Tool for Predictive Modelling in Clinical Data Science
por: Montes-Torres, Julio, et al.
Publicado: (2016) -
Small-Scale Urban Object Anomaly Detection Using Convolutional Neural Networks with Probability Estimation
por: García-Aguilar, Iván, et al.
Publicado: (2023) -
Seeded Bayesian Networks: Constructing genetic networks from microarray data
por: Djebbari, Amira, et al.
Publicado: (2008) -
Transfer learning with convolutional neural networks for cancer survival prediction using gene-expression data
por: López-García, Guillermo, et al.
Publicado: (2020) -
An improved genetic algorithm and its application in neural network adversarial attack
por: Yang, Dingming, et al.
Publicado: (2022)