Cargando…
A 3.8-V earth-abundant sodium battery electrode
Rechargeable lithium batteries have ushered the wireless revolution over last two decades and are now matured to enable green automobiles. However, the growing concern on scarcity and large-scale applications of lithium resources have steered effort to realize sustainable sodium-ion batteries, Na an...
Autores principales: | Barpanda, Prabeer, Oyama, Gosuke, Nishimura, Shin-ichi, Chung, Sai-Cheong, Yamada, Atsuo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109020/ https://www.ncbi.nlm.nih.gov/pubmed/25030272 http://dx.doi.org/10.1038/ncomms5358 |
Ejemplares similares
-
Probing Capacity
Trends in MLi(2)Ti(6)O(14) Lithium-Ion
Battery Anodes Using Calorimetric Studies
por: Jayanthi, K., et al.
Publicado: (2022) -
Intermediate honeycomb ordering to trigger oxygen redox chemistry in layered battery electrode
por: Mortemard de Boisse, Benoit, et al.
Publicado: (2016) -
Iron-Based Mixed Phosphate Na(4)Fe(3)(PO(4))(2)P(2)O(7) Thin Films
for Sodium-Ion Microbatteries
por: Senthilkumar, Baskar, et al.
Publicado: (2020) -
Structural ceramic batteries using an earth-abundant inorganic waterglass binder
por: Ransil, Alan, et al.
Publicado: (2021) -
Polymer Electrode Materials for Sodium-ion Batteries
por: Zhao, Qinglan, et al.
Publicado: (2018)