Cargando…

A fibrin/hyaluronic acid hydrogel for the delivery of mesenchymal stem cells and potential for articular cartilage repair

BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease affecting approximately 27 million Americans, and even more worldwide. OA is characterized by degeneration of subchondral bone and articular cartilage. In this study, a chondrogenic fibrin/hyaluronic acid (HA)-based hydrogel seeded with...

Descripción completa

Detalles Bibliográficos
Autores principales: Snyder, Timothy N, Madhavan, Krishna, Intrator, Miranda, Dregalla, Ryan C, Park, Daewon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109069/
https://www.ncbi.nlm.nih.gov/pubmed/25061479
http://dx.doi.org/10.1186/1754-1611-8-10
Descripción
Sumario:BACKGROUND: Osteoarthritis (OA) is a degenerative joint disease affecting approximately 27 million Americans, and even more worldwide. OA is characterized by degeneration of subchondral bone and articular cartilage. In this study, a chondrogenic fibrin/hyaluronic acid (HA)-based hydrogel seeded with bone marrow-derived mesenchymal stem cells (BMSCs) was investigated as a method of regenerating these tissues for OA therapy. This chondrogenic hydrogel system can be delivered in a minimally invasive manner through a small gauge needle, forming a three-dimensional (3D) network structure in situ. However, an ongoing problem with fibrin/HA-based biomaterials is poor mechanical strength. This was addressed by modifying HA with methacrylic anhydride (MA) (HA-MA), which reinforces the fibrin gel, thereby improving mechanical properties. In this study, a range of fibrinogen (the fibrin precursor) and HA-MA concentrations were explored to determine optimal conditions for increased mechanical strength, BMSC proliferation, and chondrogenesis potential in vitro. RESULTS: Increased mechanical strength was achieved by HA-MA reinforcement within fibrin hydrogels, and was directly correlated with increasing HA-MA concentration. Live/dead staining and metabolic assays confirmed that the crosslinked fibrin/HA-MA hydrogels provided a suitable 3D environment for BMSC proliferation. Quantitative polymerase chain reaction (qPCR) of BMSCs incubated in the fibrin/HA-MA hydrogel confirmed decreased expression of collagen type 1 alpha 1 mRNA with an increase in Sox9 mRNA expression especially in the presence of a platelet lysate, suggesting early chondrogenesis. CONCLUSION: Fibrin/HA-MA hydrogel may be a suitable delivery method for BMSCs, inducing BMSC differentiation into chondrocytes and potentially aiding in articular cartilage repair for OA therapy.