Cargando…

Molecular mechanism of double Holliday junction dissolution

Processing of homologous recombination intermediates is tightly coordinated to ensure that chromosomal integrity is maintained and tumorigenesis avoided. Decatenation of double Holliday junctions, for example, is catalysed by two enzymes that work in tight coordination and belong to the same ‘dissol...

Descripción completa

Detalles Bibliográficos
Autores principales: Swuec, Paolo, Costa, Alessandro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109787/
https://www.ncbi.nlm.nih.gov/pubmed/25061510
http://dx.doi.org/10.1186/2045-3701-4-36
Descripción
Sumario:Processing of homologous recombination intermediates is tightly coordinated to ensure that chromosomal integrity is maintained and tumorigenesis avoided. Decatenation of double Holliday junctions, for example, is catalysed by two enzymes that work in tight coordination and belong to the same ‘dissolvasome’ complex. Within the dissolvasome, the RecQ-like BLM helicase provides the translocase function for Holliday junction migration, while the topoisomerase III alpha-RMI1 subcomplex works as a proficient DNA decatenase, together resulting in double-Holliday-junction unlinking. Here, we review the available architectural and biochemical knowledge on the dissolvasome machinery, with a focus on the structural interplay between its components.