Cargando…
UVB Induces a Genome-Wide Acting Negative Regulatory Mechanism That Operates at the Level of Transcription Initiation in Human Cells
Faithful transcription of DNA is constantly threatened by different endogenous and environmental genotoxic effects. Transcription coupled repair (TCR) has been described to stop transcription and quickly remove DNA lesions from the transcribed strand of active genes, permitting rapid resumption of b...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109906/ https://www.ncbi.nlm.nih.gov/pubmed/25058334 http://dx.doi.org/10.1371/journal.pgen.1004483 |
_version_ | 1782327927942152192 |
---|---|
author | Gyenis, Ákos Umlauf, David Újfaludi, Zsuzsanna Boros, Imre Ye, Tao Tora, Làszlò |
author_facet | Gyenis, Ákos Umlauf, David Újfaludi, Zsuzsanna Boros, Imre Ye, Tao Tora, Làszlò |
author_sort | Gyenis, Ákos |
collection | PubMed |
description | Faithful transcription of DNA is constantly threatened by different endogenous and environmental genotoxic effects. Transcription coupled repair (TCR) has been described to stop transcription and quickly remove DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. This repair mechanism has been well characterized in the past using individual target genes. Moreover, numerous efforts investigated the fate of blocked RNA polymerase II (Pol II) during DNA repair mechanisms and suggested that stopped Pol II complexes can either backtrack, be removed and degraded or bypass the lesions to allow TCR. We investigated the effect of a non-lethal dose of UVB on global DNA-bound Pol II distribution in human cells. We found that the used UVB dose did not induce Pol II degradation however surprisingly at about 93% of the promoters of all expressed genes Pol II occupancy was seriously reduced 2–4 hours following UVB irradiation. The presence of Pol II at these cleared promoters was restored 5–6 hours after irradiation, indicating that the negative regulation is very dynamic. We also identified a small set of genes (including several p53 regulated genes), where the UVB-induced Pol II clearing did not operate. Interestingly, at promoters, where Pol II promoter clearance occurs, TFIIH, but not TBP, follows the behavior of Pol II, suggesting that at these genes upon UVB treatment TFIIH is sequestered for DNA repair by the TCR machinery. In agreement, in cells where the TCR factor, the Cockayne Syndrome B protein, was depleted UVB did not induce Pol II and TFIIH clearance at promoters. Thus, our study reveals a UVB induced negative regulatory mechanism that targets Pol II transcription initiation on the large majority of transcribed gene promoters, and a small subset of genes, where Pol II escapes this negative regulation. |
format | Online Article Text |
id | pubmed-4109906 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41099062014-07-29 UVB Induces a Genome-Wide Acting Negative Regulatory Mechanism That Operates at the Level of Transcription Initiation in Human Cells Gyenis, Ákos Umlauf, David Újfaludi, Zsuzsanna Boros, Imre Ye, Tao Tora, Làszlò PLoS Genet Research Article Faithful transcription of DNA is constantly threatened by different endogenous and environmental genotoxic effects. Transcription coupled repair (TCR) has been described to stop transcription and quickly remove DNA lesions from the transcribed strand of active genes, permitting rapid resumption of blocked transcription. This repair mechanism has been well characterized in the past using individual target genes. Moreover, numerous efforts investigated the fate of blocked RNA polymerase II (Pol II) during DNA repair mechanisms and suggested that stopped Pol II complexes can either backtrack, be removed and degraded or bypass the lesions to allow TCR. We investigated the effect of a non-lethal dose of UVB on global DNA-bound Pol II distribution in human cells. We found that the used UVB dose did not induce Pol II degradation however surprisingly at about 93% of the promoters of all expressed genes Pol II occupancy was seriously reduced 2–4 hours following UVB irradiation. The presence of Pol II at these cleared promoters was restored 5–6 hours after irradiation, indicating that the negative regulation is very dynamic. We also identified a small set of genes (including several p53 regulated genes), where the UVB-induced Pol II clearing did not operate. Interestingly, at promoters, where Pol II promoter clearance occurs, TFIIH, but not TBP, follows the behavior of Pol II, suggesting that at these genes upon UVB treatment TFIIH is sequestered for DNA repair by the TCR machinery. In agreement, in cells where the TCR factor, the Cockayne Syndrome B protein, was depleted UVB did not induce Pol II and TFIIH clearance at promoters. Thus, our study reveals a UVB induced negative regulatory mechanism that targets Pol II transcription initiation on the large majority of transcribed gene promoters, and a small subset of genes, where Pol II escapes this negative regulation. Public Library of Science 2014-07-24 /pmc/articles/PMC4109906/ /pubmed/25058334 http://dx.doi.org/10.1371/journal.pgen.1004483 Text en © 2014 Gyenis et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Gyenis, Ákos Umlauf, David Újfaludi, Zsuzsanna Boros, Imre Ye, Tao Tora, Làszlò UVB Induces a Genome-Wide Acting Negative Regulatory Mechanism That Operates at the Level of Transcription Initiation in Human Cells |
title | UVB Induces a Genome-Wide Acting Negative Regulatory Mechanism That Operates at the Level of Transcription Initiation in Human Cells |
title_full | UVB Induces a Genome-Wide Acting Negative Regulatory Mechanism That Operates at the Level of Transcription Initiation in Human Cells |
title_fullStr | UVB Induces a Genome-Wide Acting Negative Regulatory Mechanism That Operates at the Level of Transcription Initiation in Human Cells |
title_full_unstemmed | UVB Induces a Genome-Wide Acting Negative Regulatory Mechanism That Operates at the Level of Transcription Initiation in Human Cells |
title_short | UVB Induces a Genome-Wide Acting Negative Regulatory Mechanism That Operates at the Level of Transcription Initiation in Human Cells |
title_sort | uvb induces a genome-wide acting negative regulatory mechanism that operates at the level of transcription initiation in human cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4109906/ https://www.ncbi.nlm.nih.gov/pubmed/25058334 http://dx.doi.org/10.1371/journal.pgen.1004483 |
work_keys_str_mv | AT gyenisakos uvbinducesagenomewideactingnegativeregulatorymechanismthatoperatesattheleveloftranscriptioninitiationinhumancells AT umlaufdavid uvbinducesagenomewideactingnegativeregulatorymechanismthatoperatesattheleveloftranscriptioninitiationinhumancells AT ujfaludizsuzsanna uvbinducesagenomewideactingnegativeregulatorymechanismthatoperatesattheleveloftranscriptioninitiationinhumancells AT borosimre uvbinducesagenomewideactingnegativeregulatorymechanismthatoperatesattheleveloftranscriptioninitiationinhumancells AT yetao uvbinducesagenomewideactingnegativeregulatorymechanismthatoperatesattheleveloftranscriptioninitiationinhumancells AT toralaszlo uvbinducesagenomewideactingnegativeregulatorymechanismthatoperatesattheleveloftranscriptioninitiationinhumancells |