Cargando…

Analysis of Stop-Gain and Frameshift Variants in Human Innate Immunity Genes

Loss-of-function variants in innate immunity genes are associated with Mendelian disorders in the form of primary immunodeficiencies. Recent resequencing projects report that stop-gains and frameshifts are collectively prevalent in humans and could be responsible for some of the inter-individual var...

Descripción completa

Detalles Bibliográficos
Autores principales: Rausell, Antonio, Mohammadi, Pejman, McLaren, Paul J., Bartha, Istvan, Xenarios, Ioannis, Fellay, Jacques, Telenti, Amalio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110073/
https://www.ncbi.nlm.nih.gov/pubmed/25058640
http://dx.doi.org/10.1371/journal.pcbi.1003757
Descripción
Sumario:Loss-of-function variants in innate immunity genes are associated with Mendelian disorders in the form of primary immunodeficiencies. Recent resequencing projects report that stop-gains and frameshifts are collectively prevalent in humans and could be responsible for some of the inter-individual variability in innate immune response. Current computational approaches evaluating loss-of-function in genes carrying these variants rely on gene-level characteristics such as evolutionary conservation and functional redundancy across the genome. However, innate immunity genes represent a particular case because they are more likely to be under positive selection and duplicated. To create a ranking of severity that would be applicable to innate immunity genes we evaluated 17,764 stop-gain and 13,915 frameshift variants from the NHLBI Exome Sequencing Project and 1,000 Genomes Project. Sequence-based features such as loss of functional domains, isoform-specific truncation and nonsense-mediated decay were found to correlate with variant allele frequency and validated with gene expression data. We integrated these features in a Bayesian classification scheme and benchmarked its use in predicting pathogenic variants against Online Mendelian Inheritance in Man (OMIM) disease stop-gains and frameshifts. The classification scheme was applied in the assessment of 335 stop-gains and 236 frameshifts affecting 227 interferon-stimulated genes. The sequence-based score ranks variants in innate immunity genes according to their potential to cause disease, and complements existing gene-based pathogenicity scores. Specifically, the sequence-based score improves measurement of functional gene impairment, discriminates across different variants in a given gene and appears particularly useful for analysis of less conserved genes.