Cargando…

Web-Based Computational Chemistry Education with CHARMMing III: Reduction Potentials of Electron Transfer Proteins

A module for fast determination of reduction potentials, E°, of redox-active proteins has been implemented in the CHARMM INterface and Graphics (CHARMMing) web portal (www.charmming.org). The free energy of reduction, which is proportional to E°, is composed of an intrinsic contribution due to the r...

Descripción completa

Detalles Bibliográficos
Autores principales: Perrin, B. Scott, Miller, Benjamin T., Schalk, Vinushka, Woodcock, H. Lee, Brooks, Bernard R., Ichiye, Toshiko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110074/
https://www.ncbi.nlm.nih.gov/pubmed/25058418
http://dx.doi.org/10.1371/journal.pcbi.1003739
Descripción
Sumario:A module for fast determination of reduction potentials, E°, of redox-active proteins has been implemented in the CHARMM INterface and Graphics (CHARMMing) web portal (www.charmming.org). The free energy of reduction, which is proportional to E°, is composed of an intrinsic contribution due to the redox site and an environmental contribution due to the protein and solvent. Here, the intrinsic contribution is selected from a library of pre-calculated density functional theory values for each type of redox site and redox couple, while the environmental contribution is calculated from a crystal structure of the protein using Poisson-Boltzmann continuum electrostatics. An accompanying lesson demonstrates a calculation of E°. In this lesson, an ionizable residue in a [4Fe-4S]-protein that causes a pH-dependent E° is identified, and the E° of a mutant that would test the identification is predicted. This demonstration is valuable to both computational chemistry students and researchers interested in predicting sequence determinants of E° for mutagenesis.