Cargando…
Integration of multimodal MRI data via PCA to explain language performance
OBJECTIVE/METHODS: Neuroimaging research has predominantly focused on exploring how cortical or subcortical brain abnormalities are related to language dysfunction in patients with neurological disease through the use of single modality imaging. Still, limited knowledge exists on how various MRI mea...
Autores principales: | Kucukboyaci, N.E., Kemmotsu, N., Leyden, K.M., Girard, H.M., Tecoma, E.S., Iragui, V.J., McDonald, C.R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110349/ https://www.ncbi.nlm.nih.gov/pubmed/25068109 http://dx.doi.org/10.1016/j.nicl.2014.05.006 |
Ejemplares similares
-
Imaging network level language recovery after left PCA stroke
por: Sebastian, Rajani, et al.
Publicado: (2016) -
Group-PCA for very large fMRI datasets
por: Smith, Stephen M., et al.
Publicado: (2014) -
Improved k-t PCA Algorithm Using Artificial Sparsity in Dynamic MRI
por: Wang, Yiran, et al.
Publicado: (2017) -
Denoising High-Field Multi-Dimensional MRI With Local Complex PCA
por: Bazin, Pierre-Louis, et al.
Publicado: (2019) -
Spike sorting of heterogeneous neuron types by multimodality-weighted PCA and explicit robust variational Bayes
por: Takekawa, Takashi, et al.
Publicado: (2012)