Cargando…
Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants
Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110350/ https://www.ncbi.nlm.nih.gov/pubmed/25068107 http://dx.doi.org/10.1016/j.nicl.2014.05.013 |
_version_ | 1782327984922820608 |
---|---|
author | Rose, Jessica Vassar, Rachel Cahill-Rowley, Katelyn Stecher Guzman, Ximena Hintz, Susan R. Stevenson, David K. Barnea-Goraly, Naama |
author_facet | Rose, Jessica Vassar, Rachel Cahill-Rowley, Katelyn Stecher Guzman, Ximena Hintz, Susan R. Stevenson, David K. Barnea-Goraly, Naama |
author_sort | Rose, Jessica |
collection | PubMed |
description | Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (VLBW) preterm infants using structural MRI and diffusion tensor imaging (DTI) at near-term age. Structural brain MRI, diffusion-weighted scans, and neonatal physiological risk factors were analyzed in a cross-sectional sample of 102 VLBW preterm infants (BW ≤ 1500 g, gestational age (GA) ≤ 32 weeks), who were admitted to the Lucile Packard Children's Hospital, Stanford NICU and recruited to participate prior to routine near-term brain MRI conducted at 36.6 ± 1.8 weeks postmenstrual age (PMA) from 2010 to 2011; 66/102 also underwent a diffusion-weighted scan. Brain abnormalities were assessed qualitatively on structural MRI, and white matter (WM) microstructure was analyzed quantitatively on DTI in six subcortical regions defined by DiffeoMap neonatal brain atlas. Specific regions of interest included the genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, the thalamus, and the globus pallidus. Regional fractional anisotropy (FA) and mean diffusivity (MD) were calculated using DTI data and examined in relation to neonatal physiological risk factors including gestational age (GA), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP), and sepsis, as well as serum levels of C-reactive protein (CRP), glucose, albumin, and total bilirubin. Brain abnormalities were observed on structural MRI in 38/102 infants including 35% of females and 40% of males. Infants with brain abnormalities observed on MRI had higher incidence of BPD (42% vs. 25%) and sepsis (21% vs. 6%) and higher mean and peak serum CRP levels, respectively, (0.64 vs. 0.34 mg/dL, p = .008; 1.57 vs. 0.67 mg/dL, p= .006) compared to those without. The number of signal abnormalities observed on structural MRI correlated to mean and peak CRP (rho = .316, p = .002; rho = .318, p= .002). The number of signal abnormalities observed on MRI correlated with thalamus MD (left: r= .382, p= .002; right: r= .400, p= .001), controlling for PMA-at-scan. Thalamus WM microstructure demonstrated the strongest associations with neonatal risk factors. Higher thalamus MD on the left and right, respectively, was associated with lower GA (r = −.322, p = .009; r= −.381, p= .002), lower mean albumin (r = −.276, p= .029; r= −.385, p= .002), and lower mean bilirubin (r = −.293, p= .020; r= −.337 p= .007). Results suggest that at near-term age, thalamus WM microstructure may be particularly vulnerable to certain neonatal risk factors. Interactions between albumin, bilirubin, phototherapy, and brain development warrant further investigation. Identification of physiological risk factors associated with selective vulnerability of certain brain regions at near-term age may clarify the etiology of neurodevelopmental impairment and inform neuroprotective treatment for VLBW preterm infants. |
format | Online Article Text |
id | pubmed-4110350 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-41103502014-07-25 Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants Rose, Jessica Vassar, Rachel Cahill-Rowley, Katelyn Stecher Guzman, Ximena Hintz, Susan R. Stevenson, David K. Barnea-Goraly, Naama Neuroimage Clin Article Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (VLBW) preterm infants using structural MRI and diffusion tensor imaging (DTI) at near-term age. Structural brain MRI, diffusion-weighted scans, and neonatal physiological risk factors were analyzed in a cross-sectional sample of 102 VLBW preterm infants (BW ≤ 1500 g, gestational age (GA) ≤ 32 weeks), who were admitted to the Lucile Packard Children's Hospital, Stanford NICU and recruited to participate prior to routine near-term brain MRI conducted at 36.6 ± 1.8 weeks postmenstrual age (PMA) from 2010 to 2011; 66/102 also underwent a diffusion-weighted scan. Brain abnormalities were assessed qualitatively on structural MRI, and white matter (WM) microstructure was analyzed quantitatively on DTI in six subcortical regions defined by DiffeoMap neonatal brain atlas. Specific regions of interest included the genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, the thalamus, and the globus pallidus. Regional fractional anisotropy (FA) and mean diffusivity (MD) were calculated using DTI data and examined in relation to neonatal physiological risk factors including gestational age (GA), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP), and sepsis, as well as serum levels of C-reactive protein (CRP), glucose, albumin, and total bilirubin. Brain abnormalities were observed on structural MRI in 38/102 infants including 35% of females and 40% of males. Infants with brain abnormalities observed on MRI had higher incidence of BPD (42% vs. 25%) and sepsis (21% vs. 6%) and higher mean and peak serum CRP levels, respectively, (0.64 vs. 0.34 mg/dL, p = .008; 1.57 vs. 0.67 mg/dL, p= .006) compared to those without. The number of signal abnormalities observed on structural MRI correlated to mean and peak CRP (rho = .316, p = .002; rho = .318, p= .002). The number of signal abnormalities observed on MRI correlated with thalamus MD (left: r= .382, p= .002; right: r= .400, p= .001), controlling for PMA-at-scan. Thalamus WM microstructure demonstrated the strongest associations with neonatal risk factors. Higher thalamus MD on the left and right, respectively, was associated with lower GA (r = −.322, p = .009; r= −.381, p= .002), lower mean albumin (r = −.276, p= .029; r= −.385, p= .002), and lower mean bilirubin (r = −.293, p= .020; r= −.337 p= .007). Results suggest that at near-term age, thalamus WM microstructure may be particularly vulnerable to certain neonatal risk factors. Interactions between albumin, bilirubin, phototherapy, and brain development warrant further investigation. Identification of physiological risk factors associated with selective vulnerability of certain brain regions at near-term age may clarify the etiology of neurodevelopmental impairment and inform neuroprotective treatment for VLBW preterm infants. Elsevier 2014-06-02 /pmc/articles/PMC4110350/ /pubmed/25068107 http://dx.doi.org/10.1016/j.nicl.2014.05.013 Text en © 2014 The Authors. Published by Elsevier Inc. All rights reserved. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Article Rose, Jessica Vassar, Rachel Cahill-Rowley, Katelyn Stecher Guzman, Ximena Hintz, Susan R. Stevenson, David K. Barnea-Goraly, Naama Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants |
title | Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants |
title_full | Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants |
title_fullStr | Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants |
title_full_unstemmed | Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants |
title_short | Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants |
title_sort | neonatal physiological correlates of near-term brain development on mri and dti in very-low-birth-weight preterm infants |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110350/ https://www.ncbi.nlm.nih.gov/pubmed/25068107 http://dx.doi.org/10.1016/j.nicl.2014.05.013 |
work_keys_str_mv | AT rosejessica neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants AT vassarrachel neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants AT cahillrowleykatelyn neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants AT stecherguzmanximena neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants AT hintzsusanr neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants AT stevensondavidk neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants AT barneagoralynaama neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants |