Cargando…

Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants

Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (...

Descripción completa

Detalles Bibliográficos
Autores principales: Rose, Jessica, Vassar, Rachel, Cahill-Rowley, Katelyn, Stecher Guzman, Ximena, Hintz, Susan R., Stevenson, David K., Barnea-Goraly, Naama
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110350/
https://www.ncbi.nlm.nih.gov/pubmed/25068107
http://dx.doi.org/10.1016/j.nicl.2014.05.013
_version_ 1782327984922820608
author Rose, Jessica
Vassar, Rachel
Cahill-Rowley, Katelyn
Stecher Guzman, Ximena
Hintz, Susan R.
Stevenson, David K.
Barnea-Goraly, Naama
author_facet Rose, Jessica
Vassar, Rachel
Cahill-Rowley, Katelyn
Stecher Guzman, Ximena
Hintz, Susan R.
Stevenson, David K.
Barnea-Goraly, Naama
author_sort Rose, Jessica
collection PubMed
description Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (VLBW) preterm infants using structural MRI and diffusion tensor imaging (DTI) at near-term age. Structural brain MRI, diffusion-weighted scans, and neonatal physiological risk factors were analyzed in a cross-sectional sample of 102 VLBW preterm infants (BW ≤ 1500 g, gestational age (GA) ≤ 32 weeks), who were admitted to the Lucile Packard Children's Hospital, Stanford NICU and recruited to participate prior to routine near-term brain MRI conducted at 36.6 ± 1.8 weeks postmenstrual age (PMA) from 2010 to 2011; 66/102 also underwent a diffusion-weighted scan. Brain abnormalities were assessed qualitatively on structural MRI, and white matter (WM) microstructure was analyzed quantitatively on DTI in six subcortical regions defined by DiffeoMap neonatal brain atlas. Specific regions of interest included the genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, the thalamus, and the globus pallidus. Regional fractional anisotropy (FA) and mean diffusivity (MD) were calculated using DTI data and examined in relation to neonatal physiological risk factors including gestational age (GA), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP), and sepsis, as well as serum levels of C-reactive protein (CRP), glucose, albumin, and total bilirubin. Brain abnormalities were observed on structural MRI in 38/102 infants including 35% of females and 40% of males. Infants with brain abnormalities observed on MRI had higher incidence of BPD (42% vs. 25%) and sepsis (21% vs. 6%) and higher mean and peak serum CRP levels, respectively, (0.64 vs. 0.34 mg/dL, p = .008; 1.57 vs. 0.67 mg/dL, p= .006) compared to those without. The number of signal abnormalities observed on structural MRI correlated to mean and peak CRP (rho = .316, p = .002; rho = .318, p= .002). The number of signal abnormalities observed on MRI correlated with thalamus MD (left: r= .382, p= .002; right: r= .400, p= .001), controlling for PMA-at-scan. Thalamus WM microstructure demonstrated the strongest associations with neonatal risk factors. Higher thalamus MD on the left and right, respectively, was associated with lower GA (r = −.322, p = .009; r= −.381, p= .002), lower mean albumin (r = −.276, p= .029; r= −.385, p= .002), and lower mean bilirubin (r = −.293, p= .020; r= −.337 p= .007). Results suggest that at near-term age, thalamus WM microstructure may be particularly vulnerable to certain neonatal risk factors. Interactions between albumin, bilirubin, phototherapy, and brain development warrant further investigation. Identification of physiological risk factors associated with selective vulnerability of certain brain regions at near-term age may clarify the etiology of neurodevelopmental impairment and inform neuroprotective treatment for VLBW preterm infants.
format Online
Article
Text
id pubmed-4110350
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-41103502014-07-25 Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants Rose, Jessica Vassar, Rachel Cahill-Rowley, Katelyn Stecher Guzman, Ximena Hintz, Susan R. Stevenson, David K. Barnea-Goraly, Naama Neuroimage Clin Article Structural brain abnormalities identified at near-term age have been recognized as potential predictors of neurodevelopment in children born preterm. The aim of this study was to examine the relationship between neonatal physiological risk factors and early brain structure in very-low-birth-weight (VLBW) preterm infants using structural MRI and diffusion tensor imaging (DTI) at near-term age. Structural brain MRI, diffusion-weighted scans, and neonatal physiological risk factors were analyzed in a cross-sectional sample of 102 VLBW preterm infants (BW ≤ 1500 g, gestational age (GA) ≤ 32 weeks), who were admitted to the Lucile Packard Children's Hospital, Stanford NICU and recruited to participate prior to routine near-term brain MRI conducted at 36.6 ± 1.8 weeks postmenstrual age (PMA) from 2010 to 2011; 66/102 also underwent a diffusion-weighted scan. Brain abnormalities were assessed qualitatively on structural MRI, and white matter (WM) microstructure was analyzed quantitatively on DTI in six subcortical regions defined by DiffeoMap neonatal brain atlas. Specific regions of interest included the genu and splenium of the corpus callosum, anterior and posterior limbs of the internal capsule, the thalamus, and the globus pallidus. Regional fractional anisotropy (FA) and mean diffusivity (MD) were calculated using DTI data and examined in relation to neonatal physiological risk factors including gestational age (GA), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), retinopathy of prematurity (ROP), and sepsis, as well as serum levels of C-reactive protein (CRP), glucose, albumin, and total bilirubin. Brain abnormalities were observed on structural MRI in 38/102 infants including 35% of females and 40% of males. Infants with brain abnormalities observed on MRI had higher incidence of BPD (42% vs. 25%) and sepsis (21% vs. 6%) and higher mean and peak serum CRP levels, respectively, (0.64 vs. 0.34 mg/dL, p = .008; 1.57 vs. 0.67 mg/dL, p= .006) compared to those without. The number of signal abnormalities observed on structural MRI correlated to mean and peak CRP (rho = .316, p = .002; rho = .318, p= .002). The number of signal abnormalities observed on MRI correlated with thalamus MD (left: r= .382, p= .002; right: r= .400, p= .001), controlling for PMA-at-scan. Thalamus WM microstructure demonstrated the strongest associations with neonatal risk factors. Higher thalamus MD on the left and right, respectively, was associated with lower GA (r = −.322, p = .009; r= −.381, p= .002), lower mean albumin (r = −.276, p= .029; r= −.385, p= .002), and lower mean bilirubin (r = −.293, p= .020; r= −.337 p= .007). Results suggest that at near-term age, thalamus WM microstructure may be particularly vulnerable to certain neonatal risk factors. Interactions between albumin, bilirubin, phototherapy, and brain development warrant further investigation. Identification of physiological risk factors associated with selective vulnerability of certain brain regions at near-term age may clarify the etiology of neurodevelopmental impairment and inform neuroprotective treatment for VLBW preterm infants. Elsevier 2014-06-02 /pmc/articles/PMC4110350/ /pubmed/25068107 http://dx.doi.org/10.1016/j.nicl.2014.05.013 Text en © 2014 The Authors. Published by Elsevier Inc. All rights reserved. http://creativecommons.org/licenses/by-nc-sa/3.0/ This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
spellingShingle Article
Rose, Jessica
Vassar, Rachel
Cahill-Rowley, Katelyn
Stecher Guzman, Ximena
Hintz, Susan R.
Stevenson, David K.
Barnea-Goraly, Naama
Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants
title Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants
title_full Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants
title_fullStr Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants
title_full_unstemmed Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants
title_short Neonatal physiological correlates of near-term brain development on MRI and DTI in very-low-birth-weight preterm infants
title_sort neonatal physiological correlates of near-term brain development on mri and dti in very-low-birth-weight preterm infants
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110350/
https://www.ncbi.nlm.nih.gov/pubmed/25068107
http://dx.doi.org/10.1016/j.nicl.2014.05.013
work_keys_str_mv AT rosejessica neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants
AT vassarrachel neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants
AT cahillrowleykatelyn neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants
AT stecherguzmanximena neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants
AT hintzsusanr neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants
AT stevensondavidk neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants
AT barneagoralynaama neonatalphysiologicalcorrelatesofneartermbraindevelopmentonmrianddtiinverylowbirthweightpreterminfants