Cargando…
Identification of pathogenic microbial cells and spores by electrochemical detection on a biochip
BACKGROUND: Bacillus cereus constitutes a significant cause of acute food poisoning in humans. Despite the recent development of different detection methods, new effective control measures and better diagnostic tools are required for quick and reliable detection of pathogenic micro-organisms. Thus,...
Autores principales: | , , , , |
---|---|
Formato: | Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2004
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC411050/ https://www.ncbi.nlm.nih.gov/pubmed/15090067 http://dx.doi.org/10.1186/1475-2859-3-2 |
_version_ | 1782121402159071232 |
---|---|
author | Gabig-Ciminska, Magdalena Andresen, Heiko Albers, Joerg Hintsche, Rainer Enfors, Sven-Olof |
author_facet | Gabig-Ciminska, Magdalena Andresen, Heiko Albers, Joerg Hintsche, Rainer Enfors, Sven-Olof |
author_sort | Gabig-Ciminska, Magdalena |
collection | PubMed |
description | BACKGROUND: Bacillus cereus constitutes a significant cause of acute food poisoning in humans. Despite the recent development of different detection methods, new effective control measures and better diagnostic tools are required for quick and reliable detection of pathogenic micro-organisms. Thus, the objective of this study was to determine a simple method for rapid identification of enterotoxic Bacillus strains. Here, a special attention is given to an electrochemical biosensor since it meets the requirements of minimal size, lower costs and decreased power consumption. RESULTS: A bead-based sandwich hybridization system was employed in conjugation with electric chips for detection of vegetative cells and spores of Bacillus strains based on their toxin-encoding genes. The system consists of a silicon chip based potentiometric cell, and utilizes paramagnetic beads as solid carriers of the DNA probes. The specific signals from 20 amol of bacterial cell or spore DNA were achieved in less than 4 h. The method was also successful when applied directly to unpurified spore and cell extract samples. The assay for the haemolytic enterotoxin genes resulted in reproducible signals from B. cereus and B. thuringiensis while haemolysin-negative B. subtilis strain did not yield any signal. CONCLUSIONS: The sensitivity, convenience and specificity of the system have shown its potential. In this respect an electrochemical detection on a chip enabling a fast characterization and monitoring of pathogens in food is of interest. This system can offer a contribution in the rapid identification of bacteria based on the presence of specific genes without preceding nucleic acid amplification. |
format | Text |
id | pubmed-411050 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2004 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-4110502004-05-19 Identification of pathogenic microbial cells and spores by electrochemical detection on a biochip Gabig-Ciminska, Magdalena Andresen, Heiko Albers, Joerg Hintsche, Rainer Enfors, Sven-Olof Microb Cell Fact Research BACKGROUND: Bacillus cereus constitutes a significant cause of acute food poisoning in humans. Despite the recent development of different detection methods, new effective control measures and better diagnostic tools are required for quick and reliable detection of pathogenic micro-organisms. Thus, the objective of this study was to determine a simple method for rapid identification of enterotoxic Bacillus strains. Here, a special attention is given to an electrochemical biosensor since it meets the requirements of minimal size, lower costs and decreased power consumption. RESULTS: A bead-based sandwich hybridization system was employed in conjugation with electric chips for detection of vegetative cells and spores of Bacillus strains based on their toxin-encoding genes. The system consists of a silicon chip based potentiometric cell, and utilizes paramagnetic beads as solid carriers of the DNA probes. The specific signals from 20 amol of bacterial cell or spore DNA were achieved in less than 4 h. The method was also successful when applied directly to unpurified spore and cell extract samples. The assay for the haemolytic enterotoxin genes resulted in reproducible signals from B. cereus and B. thuringiensis while haemolysin-negative B. subtilis strain did not yield any signal. CONCLUSIONS: The sensitivity, convenience and specificity of the system have shown its potential. In this respect an electrochemical detection on a chip enabling a fast characterization and monitoring of pathogens in food is of interest. This system can offer a contribution in the rapid identification of bacteria based on the presence of specific genes without preceding nucleic acid amplification. BioMed Central 2004-04-16 /pmc/articles/PMC411050/ /pubmed/15090067 http://dx.doi.org/10.1186/1475-2859-3-2 Text en Copyright © 2004 Gabig-Ciminska et al; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. |
spellingShingle | Research Gabig-Ciminska, Magdalena Andresen, Heiko Albers, Joerg Hintsche, Rainer Enfors, Sven-Olof Identification of pathogenic microbial cells and spores by electrochemical detection on a biochip |
title | Identification of pathogenic microbial cells and spores by electrochemical detection on a biochip |
title_full | Identification of pathogenic microbial cells and spores by electrochemical detection on a biochip |
title_fullStr | Identification of pathogenic microbial cells and spores by electrochemical detection on a biochip |
title_full_unstemmed | Identification of pathogenic microbial cells and spores by electrochemical detection on a biochip |
title_short | Identification of pathogenic microbial cells and spores by electrochemical detection on a biochip |
title_sort | identification of pathogenic microbial cells and spores by electrochemical detection on a biochip |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC411050/ https://www.ncbi.nlm.nih.gov/pubmed/15090067 http://dx.doi.org/10.1186/1475-2859-3-2 |
work_keys_str_mv | AT gabigciminskamagdalena identificationofpathogenicmicrobialcellsandsporesbyelectrochemicaldetectiononabiochip AT andresenheiko identificationofpathogenicmicrobialcellsandsporesbyelectrochemicaldetectiononabiochip AT albersjoerg identificationofpathogenicmicrobialcellsandsporesbyelectrochemicaldetectiononabiochip AT hintscherainer identificationofpathogenicmicrobialcellsandsporesbyelectrochemicaldetectiononabiochip AT enforssvenolof identificationofpathogenicmicrobialcellsandsporesbyelectrochemicaldetectiononabiochip |