Cargando…
Using logistic regression to improve the prognostic value of microarray gene expression data sets: application to early-stage squamous cell carcinoma of the lung and triple negative breast carcinoma
BACKGROUND: Numerous microarray-based prognostic gene expression signatures of primary neoplasms have been published but often with little concurrence between studies, thus limiting their clinical utility. We describe a methodology using logistic regression, which circumvents limitations of conventi...
Autores principales: | Mount, David W, Putnam, Charles W, Centouri, Sara M, Manziello, Ann M, Pandey, Ritu, Garland, Linda L, Martinez, Jesse D |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110620/ https://www.ncbi.nlm.nih.gov/pubmed/24916928 http://dx.doi.org/10.1186/1755-8794-7-33 |
Ejemplares similares
-
A Logistic Regression Model for Noninvasive Prediction of AFP-Negative Hepatocellular Carcinoma
por: Luo, Chang-Liang, et al.
Publicado: (2019) -
Applied logistic regression /
por: Hosmer, David W.
Publicado: (2000) -
Applied logistic regression
por: Hosmer, David W, et al.
Publicado: (2013) -
Integrated network analysis and logistic regression modeling identify stage-specific genes in Oral Squamous Cell Carcinoma
por: Randhawa, Vinay, et al.
Publicado: (2015) -
Double-negative (CD27(−)IgD(−)) B cells are expanded in NSCLC and inversely correlate with affinity-matured B cell populations
por: Centuori, Sara M., et al.
Publicado: (2018)