Cargando…
Inference of radio-responsive gene regulatory networks using the graphical lasso algorithm
BACKGROUND: Inference of gene regulatory networks (GRNs) from gene microarray expression data is of great interest and remains a challenging task in systems biology. Despite many efforts to develop efficient computational methods, the successful modeling of GRNs thus far has been quite limited. To t...
Autores principales: | Oh, Jung Hun, Deasy, Joseph O |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110733/ https://www.ncbi.nlm.nih.gov/pubmed/25077716 http://dx.doi.org/10.1186/1471-2105-15-S7-S5 |
Ejemplares similares
-
Gene regulatory network inference using fused LASSO on multiple data sets
por: Omranian, Nooshin, et al.
Publicado: (2016) -
Importance-Penalized Joint Graphical Lasso (IPJGL): differential network inference via GGMs
por: Leng, Jiacheng, et al.
Publicado: (2021) -
Efficient Proximal Gradient Algorithms for Joint Graphical Lasso
por: Chen, Jie, et al.
Publicado: (2021) -
Application of graphical lasso in estimating network structure in gene set
por: Huang, Yu-Jyun, et al.
Publicado: (2020) -
Tailored graphical lasso for data integration in gene network reconstruction
por: Lingjærde, Camilla, et al.
Publicado: (2021)