Cargando…

Measuring Changes in Tactile Sensitivity in the Hind Paw of Mice Using an Electronic von Frey Apparatus

Measuring inflammation-induced changes in thresholds of hind paw withdrawal from mechanical pressure is a useful technique to assess changes in pain perception in rodents. Withdrawal thresholds can be measured first at baseline and then following drug, venom, injury, allergen, or otherwise evoked in...

Descripción completa

Detalles Bibliográficos
Autores principales: Martinov, Tijana, Mack, Madison, Sykes, Akilah, Chatterjea, Devavani
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MyJove Corporation 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4110928/
https://www.ncbi.nlm.nih.gov/pubmed/24378519
http://dx.doi.org/10.3791/51212
Descripción
Sumario:Measuring inflammation-induced changes in thresholds of hind paw withdrawal from mechanical pressure is a useful technique to assess changes in pain perception in rodents. Withdrawal thresholds can be measured first at baseline and then following drug, venom, injury, allergen, or otherwise evoked inflammation by applying an accurate force on very specific areas of the skin. An electronic von Frey apparatus allows precise assessment of mouse hind paw withdrawal thresholds that are not limited by the available filament sizes in contrast to classical von Frey measurements. The ease and rapidity of measurements allow for incorporation of assessment of tactile sensitivity outcomes in diverse models of rapid-onset inflammatory and neuropathic pain as multiple measurements can be taken within a short time period. Experimental measurements for individual rodent subjects can be internally controlled against individual baseline responses and exclusion criteria easily established to standardize baseline responses within and across experimental groups. Thus, measurements using an electronic von Frey apparatus represent a useful modification of the well-established classical von Frey filament-based assays for rodent mechanical allodynia that may also be applied to other nonhuman mammalian models.