Cargando…
Cluster Glasses of Semiflexible Ring Polymers
[Image: see text] We present computer simulations of concentrated solutions of unknotted nonconcatenated semiflexible ring polymers. Unlike in their flexible counterparts, shrinking involves a strong energetic penalty, favoring interpenetration and clustering of the rings. We investigate the slow dy...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111402/ https://www.ncbi.nlm.nih.gov/pubmed/25083314 http://dx.doi.org/10.1021/mz500117v |
Sumario: | [Image: see text] We present computer simulations of concentrated solutions of unknotted nonconcatenated semiflexible ring polymers. Unlike in their flexible counterparts, shrinking involves a strong energetic penalty, favoring interpenetration and clustering of the rings. We investigate the slow dynamics of the centers-of-mass of the rings in the amorphous cluster phase, consisting of disordered columns of oblate rings penetrated by bundles of prolate ones. Scattering functions reveal a striking decoupling of self- and collective motions. Correlations between centers-of-mass exhibit slow relaxation, as expected for an incipient glass transition, indicating the dynamic arrest of the cluster positions. However, self-correlations decay at much shorter time scales. This feature is a manifestation of the fast, continuous exchange and diffusion of the individual rings over the matrix of clusters. Our results reveal a novel scenario of glass formation in a simple monodisperse system, characterized by self-collective decoupling, soft caging, and mild dynamic heterogeneity. |
---|