Cargando…
Increased Hyaluronan Levels in HABP1/p32/gC1qR Overexpressing HepG2 Cells Inhibit Autophagic Vacuolation Regulating Tumor Potency
Tumor growth and development is influenced by its microenvironment. A major extracellular matrix molecule involved in cancer progression is hyaluronan (HA). Hyaluronan and expression of a number of hyaladherin family proteins are dramatically increased in many cancer malignancies. One such hyaladher...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111551/ https://www.ncbi.nlm.nih.gov/pubmed/25061661 http://dx.doi.org/10.1371/journal.pone.0103208 |
_version_ | 1782328098520301568 |
---|---|
author | Saha, Paramita Ghosh, Ilora Datta, Kasturi |
author_facet | Saha, Paramita Ghosh, Ilora Datta, Kasturi |
author_sort | Saha, Paramita |
collection | PubMed |
description | Tumor growth and development is influenced by its microenvironment. A major extracellular matrix molecule involved in cancer progression is hyaluronan (HA). Hyaluronan and expression of a number of hyaladherin family proteins are dramatically increased in many cancer malignancies. One such hyaladherin, hyaluronan-binding protein 1 (HABP1/p32/gC1qR) has been considered to be a biomarker for tumor progression. Interestingly, overexpression of HABP1 in fibroblast has been shown to increase autophagy via generation of excess reactive oxygen species (ROS) and depletion of HA leading to apoptosis. Cancerous cells are often found to exhibit decreased rate of proteolysis/autophagy in comparison to their normal counterparts. To determine if HABP1 levels alter tumorigenicity of cancerous cells, HepR21, the stable transfectant overexpressing HABP1 in HepG2 cell line was derived. HepR21 has been shown to have increased proliferation rate than HepG2, intracellular HA cable formation and enhanced tumor potency without any significant alteration of intracellular ROS. In this paper we have observed that HepR21 cells containing higher endogenous HA levels, have downregulated expression of the autophagic marker, MAP-LC3, consistent with unaltered levels of endogenous ROS. In fact, HepR21 cells seem to have significant resistance to exogenous ROS stimuli and glutathione depletion. HepR21 cells were also found to be more resilient to nutrient starvation in comparison to its parent cell line. Decline in intracellular HA levels and HA cables in HepR21 cells upon treatment with HAS inhibitor (4-MU), induced a surge in ROS levels leading to increased expression of MAP-LC3 and tumor suppressors Beclin 1 and PTEN. This suggests the importance of HABP1 induced HA cable formation in enhancing tumor potency by maintaining the oxidant levels and subsequent autophagic vacuolation. |
format | Online Article Text |
id | pubmed-4111551 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-41115512014-07-29 Increased Hyaluronan Levels in HABP1/p32/gC1qR Overexpressing HepG2 Cells Inhibit Autophagic Vacuolation Regulating Tumor Potency Saha, Paramita Ghosh, Ilora Datta, Kasturi PLoS One Research Article Tumor growth and development is influenced by its microenvironment. A major extracellular matrix molecule involved in cancer progression is hyaluronan (HA). Hyaluronan and expression of a number of hyaladherin family proteins are dramatically increased in many cancer malignancies. One such hyaladherin, hyaluronan-binding protein 1 (HABP1/p32/gC1qR) has been considered to be a biomarker for tumor progression. Interestingly, overexpression of HABP1 in fibroblast has been shown to increase autophagy via generation of excess reactive oxygen species (ROS) and depletion of HA leading to apoptosis. Cancerous cells are often found to exhibit decreased rate of proteolysis/autophagy in comparison to their normal counterparts. To determine if HABP1 levels alter tumorigenicity of cancerous cells, HepR21, the stable transfectant overexpressing HABP1 in HepG2 cell line was derived. HepR21 has been shown to have increased proliferation rate than HepG2, intracellular HA cable formation and enhanced tumor potency without any significant alteration of intracellular ROS. In this paper we have observed that HepR21 cells containing higher endogenous HA levels, have downregulated expression of the autophagic marker, MAP-LC3, consistent with unaltered levels of endogenous ROS. In fact, HepR21 cells seem to have significant resistance to exogenous ROS stimuli and glutathione depletion. HepR21 cells were also found to be more resilient to nutrient starvation in comparison to its parent cell line. Decline in intracellular HA levels and HA cables in HepR21 cells upon treatment with HAS inhibitor (4-MU), induced a surge in ROS levels leading to increased expression of MAP-LC3 and tumor suppressors Beclin 1 and PTEN. This suggests the importance of HABP1 induced HA cable formation in enhancing tumor potency by maintaining the oxidant levels and subsequent autophagic vacuolation. Public Library of Science 2014-07-25 /pmc/articles/PMC4111551/ /pubmed/25061661 http://dx.doi.org/10.1371/journal.pone.0103208 Text en © 2014 Saha et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Saha, Paramita Ghosh, Ilora Datta, Kasturi Increased Hyaluronan Levels in HABP1/p32/gC1qR Overexpressing HepG2 Cells Inhibit Autophagic Vacuolation Regulating Tumor Potency |
title | Increased Hyaluronan Levels in HABP1/p32/gC1qR Overexpressing HepG2 Cells Inhibit Autophagic Vacuolation Regulating Tumor Potency |
title_full | Increased Hyaluronan Levels in HABP1/p32/gC1qR Overexpressing HepG2 Cells Inhibit Autophagic Vacuolation Regulating Tumor Potency |
title_fullStr | Increased Hyaluronan Levels in HABP1/p32/gC1qR Overexpressing HepG2 Cells Inhibit Autophagic Vacuolation Regulating Tumor Potency |
title_full_unstemmed | Increased Hyaluronan Levels in HABP1/p32/gC1qR Overexpressing HepG2 Cells Inhibit Autophagic Vacuolation Regulating Tumor Potency |
title_short | Increased Hyaluronan Levels in HABP1/p32/gC1qR Overexpressing HepG2 Cells Inhibit Autophagic Vacuolation Regulating Tumor Potency |
title_sort | increased hyaluronan levels in habp1/p32/gc1qr overexpressing hepg2 cells inhibit autophagic vacuolation regulating tumor potency |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4111551/ https://www.ncbi.nlm.nih.gov/pubmed/25061661 http://dx.doi.org/10.1371/journal.pone.0103208 |
work_keys_str_mv | AT sahaparamita increasedhyaluronanlevelsinhabp1p32gc1qroverexpressinghepg2cellsinhibitautophagicvacuolationregulatingtumorpotency AT ghoshilora increasedhyaluronanlevelsinhabp1p32gc1qroverexpressinghepg2cellsinhibitautophagicvacuolationregulatingtumorpotency AT dattakasturi increasedhyaluronanlevelsinhabp1p32gc1qroverexpressinghepg2cellsinhibitautophagicvacuolationregulatingtumorpotency |