Cargando…
The effect of parametric stimulus size variation on individual face discrimination indexed by fast periodic visual stimulation
BACKGROUND: The human brain is frequently exposed to individual faces across a wide range of different apparent sizes, often seen simultaneously (e.g., when facing a crowd). Here we used a sensitive and objective fast periodic visual stimulation approach while recording scalp electroencephalogram (E...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112211/ https://www.ncbi.nlm.nih.gov/pubmed/25038784 http://dx.doi.org/10.1186/1471-2202-15-87 |
Sumario: | BACKGROUND: The human brain is frequently exposed to individual faces across a wide range of different apparent sizes, often seen simultaneously (e.g., when facing a crowd). Here we used a sensitive and objective fast periodic visual stimulation approach while recording scalp electroencephalogram (EEG) to test the effect of size variation on neural responses reflecting individual face discrimination. METHODS: EEG was recorded in ten observers presented with the same face identity at a fixed rate (5.88 Hz, frequency F) and different oddball face identities appearing every five faces (F/5, i.e., 1.18 Hz). Stimulus size was either constant (6.5 × 4 degrees of visual angle) or changed randomly at each stimulation cycle, by 2:1 ratio increasing values from 10% to 80% size variation in four conditions. Absolute stimulus size remained constant across conditions. RESULTS: The base rate 5.88 Hz EEG response increased with image size variation, particularly over the right occipito-temporal cortex. In contrast, size variation decreased the oddball response marking individual face discrimination over the right occipito-temporal cortex. At constant stimulus size, the F/5 change of identity generated an early (about 100 ms) oddball response reflecting individual face discrimination based on image-based cues. This early component disappeared with a relatively small size variation (i.e., 20%), leaving a robust high-level index of individual face discrimination. CONCLUSIONS: Stimulus size variation is an important manipulation to isolate the contribution of high-level visual processes to individual face discrimination. Nevertheless, even for relatively small stimuli, high-level individual face discrimination processes in the right occipito-temporal cortex remain sensitive to stimulus size variation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/1471-2202-15-87) contains supplementary material, which is available to authorized users. |
---|