Cargando…
Bayesian approach to single-cell differential expression analysis
Single-cell data provides means to dissect the composition of complex tissues and specialized cellular environments. However, the analysis of such measurements is complicated by high levels of technical noise and intrinsic biological variability. We describe a probabilistic model of expression magni...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112276/ https://www.ncbi.nlm.nih.gov/pubmed/24836921 http://dx.doi.org/10.1038/nmeth.2967 |
Sumario: | Single-cell data provides means to dissect the composition of complex tissues and specialized cellular environments. However, the analysis of such measurements is complicated by high levels of technical noise and intrinsic biological variability. We describe a probabilistic model of expression magnitude distortions typical of single-cell RNA sequencing measurements, which enables detection of differential expression signatures and identification of subpopulations of cells in a way that is more tolerant of noise. |
---|