Cargando…
Bayesian approach to single-cell differential expression analysis
Single-cell data provides means to dissect the composition of complex tissues and specialized cellular environments. However, the analysis of such measurements is complicated by high levels of technical noise and intrinsic biological variability. We describe a probabilistic model of expression magni...
Autores principales: | Kharchenko, Peter V., Silberstein, Lev, Scadden, David T. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4112276/ https://www.ncbi.nlm.nih.gov/pubmed/24836921 http://dx.doi.org/10.1038/nmeth.2967 |
Ejemplares similares
-
dropEst: pipeline for accurate estimation of molecular counts in droplet-based single-cell RNA-seq experiments
por: Petukhov, Viktor, et al.
Publicado: (2018) -
Image-seq: spatially resolved single-cell sequencing guided by in situ and in vivo imaging
por: Haase, Christa, et al.
Publicado: (2022) -
baredSC: Bayesian approach to retrieve expression distribution of single-cell data
por: Lopez-Delisle, Lucille, et al.
Publicado: (2022) -
Single-Cell Differential Network Analysis with Sparse Bayesian Factor Models
por: Sekula, Michael, et al.
Publicado: (2022) -
A Bayesian mixture model for the analysis of allelic expression in single cells
por: Choi, Kwangbom, et al.
Publicado: (2019)