Cargando…
Chronic Reduction of Plasma Free Fatty Acid Improves Mitochondrial Function and Whole-Body Insulin Sensitivity in Obese and Type 2 Diabetic Individuals
Insulin resistance and dysregulation of free fatty acid (FFA) metabolism are core defects in type 2 diabetic (T2DM) and obese normal glucose tolerant (NGT) individuals. Impaired muscle mitochondrial function (reduced ATP synthesis) also has been described in insulin-resistant T2DM and obese subjects...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Diabetes Association
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113069/ https://www.ncbi.nlm.nih.gov/pubmed/24353180 http://dx.doi.org/10.2337/db13-1130 |
_version_ | 1782328243501662208 |
---|---|
author | Daniele, Giuseppe Eldor, Roy Merovci, Aurora Clarke, Geoffrey D. Xiong, Juan Tripathy, Devjit Taranova, Anna Abdul-Ghani, Muhammad DeFronzo, Ralph A. |
author_facet | Daniele, Giuseppe Eldor, Roy Merovci, Aurora Clarke, Geoffrey D. Xiong, Juan Tripathy, Devjit Taranova, Anna Abdul-Ghani, Muhammad DeFronzo, Ralph A. |
author_sort | Daniele, Giuseppe |
collection | PubMed |
description | Insulin resistance and dysregulation of free fatty acid (FFA) metabolism are core defects in type 2 diabetic (T2DM) and obese normal glucose tolerant (NGT) individuals. Impaired muscle mitochondrial function (reduced ATP synthesis) also has been described in insulin-resistant T2DM and obese subjects. We examined whether reduction in plasma FFA concentration with acipimox improved ATP synthesis rate and altered reactive oxygen species (ROS) production. Eleven NGT obese and 11 T2DM subjects received 1) OGTT, 2) euglycemic insulin clamp with muscle biopsy, and 3) (1)H-magnetic resonance spectroscopy of tibialis anterior muscle before and after acipimox (250 mg every 6 h for 12 days). ATP synthesis rate and ROS generation were measured in mitochondria isolated from muscle tissue ex vivo with chemoluminescence and fluorescence techniques, respectively. Acipimox 1) markedly reduced the fasting plasma FFA concentration and enhanced suppression of plasma FFA during oral glucose tolerance tests and insulin clamp in obese NGT and T2DM subjects and 2) enhanced insulin-mediated muscle glucose disposal and suppression of hepatic glucose production. The improvement in insulin sensitivity was closely correlated with the decrease in plasma FFA in obese NGT (r = 0.81) and T2DM (r = 0.76) subjects (both P < 0.001). Mitochondrial ATP synthesis rate increased by >50% in both obese NGT and T2DM subjects and was strongly correlated with the decrease in plasma FFA and increase in insulin-mediated glucose disposal (both r > 0.70, P < 0.001). Production of ROS did not change after acipimox. Reduction in plasma FFA in obese NGT and T2DM individuals improves mitochondrial ATP synthesis rate, indicating that the mitochondrial defect in insulin-resistant individuals is, at least in part, reversible. |
format | Online Article Text |
id | pubmed-4113069 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Diabetes Association |
record_format | MEDLINE/PubMed |
spelling | pubmed-41130692015-08-01 Chronic Reduction of Plasma Free Fatty Acid Improves Mitochondrial Function and Whole-Body Insulin Sensitivity in Obese and Type 2 Diabetic Individuals Daniele, Giuseppe Eldor, Roy Merovci, Aurora Clarke, Geoffrey D. Xiong, Juan Tripathy, Devjit Taranova, Anna Abdul-Ghani, Muhammad DeFronzo, Ralph A. Diabetes Pathophysiology Insulin resistance and dysregulation of free fatty acid (FFA) metabolism are core defects in type 2 diabetic (T2DM) and obese normal glucose tolerant (NGT) individuals. Impaired muscle mitochondrial function (reduced ATP synthesis) also has been described in insulin-resistant T2DM and obese subjects. We examined whether reduction in plasma FFA concentration with acipimox improved ATP synthesis rate and altered reactive oxygen species (ROS) production. Eleven NGT obese and 11 T2DM subjects received 1) OGTT, 2) euglycemic insulin clamp with muscle biopsy, and 3) (1)H-magnetic resonance spectroscopy of tibialis anterior muscle before and after acipimox (250 mg every 6 h for 12 days). ATP synthesis rate and ROS generation were measured in mitochondria isolated from muscle tissue ex vivo with chemoluminescence and fluorescence techniques, respectively. Acipimox 1) markedly reduced the fasting plasma FFA concentration and enhanced suppression of plasma FFA during oral glucose tolerance tests and insulin clamp in obese NGT and T2DM subjects and 2) enhanced insulin-mediated muscle glucose disposal and suppression of hepatic glucose production. The improvement in insulin sensitivity was closely correlated with the decrease in plasma FFA in obese NGT (r = 0.81) and T2DM (r = 0.76) subjects (both P < 0.001). Mitochondrial ATP synthesis rate increased by >50% in both obese NGT and T2DM subjects and was strongly correlated with the decrease in plasma FFA and increase in insulin-mediated glucose disposal (both r > 0.70, P < 0.001). Production of ROS did not change after acipimox. Reduction in plasma FFA in obese NGT and T2DM individuals improves mitochondrial ATP synthesis rate, indicating that the mitochondrial defect in insulin-resistant individuals is, at least in part, reversible. American Diabetes Association 2014-08 2014-07-17 /pmc/articles/PMC4113069/ /pubmed/24353180 http://dx.doi.org/10.2337/db13-1130 Text en © 2014 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. |
spellingShingle | Pathophysiology Daniele, Giuseppe Eldor, Roy Merovci, Aurora Clarke, Geoffrey D. Xiong, Juan Tripathy, Devjit Taranova, Anna Abdul-Ghani, Muhammad DeFronzo, Ralph A. Chronic Reduction of Plasma Free Fatty Acid Improves Mitochondrial Function and Whole-Body Insulin Sensitivity in Obese and Type 2 Diabetic Individuals |
title | Chronic Reduction of Plasma Free Fatty Acid Improves Mitochondrial Function and Whole-Body Insulin Sensitivity in Obese and Type 2 Diabetic Individuals |
title_full | Chronic Reduction of Plasma Free Fatty Acid Improves Mitochondrial Function and Whole-Body Insulin Sensitivity in Obese and Type 2 Diabetic Individuals |
title_fullStr | Chronic Reduction of Plasma Free Fatty Acid Improves Mitochondrial Function and Whole-Body Insulin Sensitivity in Obese and Type 2 Diabetic Individuals |
title_full_unstemmed | Chronic Reduction of Plasma Free Fatty Acid Improves Mitochondrial Function and Whole-Body Insulin Sensitivity in Obese and Type 2 Diabetic Individuals |
title_short | Chronic Reduction of Plasma Free Fatty Acid Improves Mitochondrial Function and Whole-Body Insulin Sensitivity in Obese and Type 2 Diabetic Individuals |
title_sort | chronic reduction of plasma free fatty acid improves mitochondrial function and whole-body insulin sensitivity in obese and type 2 diabetic individuals |
topic | Pathophysiology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4113069/ https://www.ncbi.nlm.nih.gov/pubmed/24353180 http://dx.doi.org/10.2337/db13-1130 |
work_keys_str_mv | AT danielegiuseppe chronicreductionofplasmafreefattyacidimprovesmitochondrialfunctionandwholebodyinsulinsensitivityinobeseandtype2diabeticindividuals AT eldorroy chronicreductionofplasmafreefattyacidimprovesmitochondrialfunctionandwholebodyinsulinsensitivityinobeseandtype2diabeticindividuals AT merovciaurora chronicreductionofplasmafreefattyacidimprovesmitochondrialfunctionandwholebodyinsulinsensitivityinobeseandtype2diabeticindividuals AT clarkegeoffreyd chronicreductionofplasmafreefattyacidimprovesmitochondrialfunctionandwholebodyinsulinsensitivityinobeseandtype2diabeticindividuals AT xiongjuan chronicreductionofplasmafreefattyacidimprovesmitochondrialfunctionandwholebodyinsulinsensitivityinobeseandtype2diabeticindividuals AT tripathydevjit chronicreductionofplasmafreefattyacidimprovesmitochondrialfunctionandwholebodyinsulinsensitivityinobeseandtype2diabeticindividuals AT taranovaanna chronicreductionofplasmafreefattyacidimprovesmitochondrialfunctionandwholebodyinsulinsensitivityinobeseandtype2diabeticindividuals AT abdulghanimuhammad chronicreductionofplasmafreefattyacidimprovesmitochondrialfunctionandwholebodyinsulinsensitivityinobeseandtype2diabeticindividuals AT defronzoralpha chronicreductionofplasmafreefattyacidimprovesmitochondrialfunctionandwholebodyinsulinsensitivityinobeseandtype2diabeticindividuals |